Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,16 +13,13 @@ import torch
|
|
13 |
from loguru import logger
|
14 |
from PIL import Image
|
15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
-
|
17 |
-
# CSV/TXT ๋ถ์
|
18 |
import pandas as pd
|
19 |
-
# PDF ํ
์คํธ ์ถ์ถ์ฉ
|
20 |
import PyPDF2
|
21 |
|
22 |
##################################################
|
23 |
-
#
|
24 |
##################################################
|
25 |
-
MAX_CONTENT_CHARS = 8000 # ํ
์คํธ๋ก ์ ๋ฌ ์ ์ต๋
|
26 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
27 |
|
28 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
@@ -32,18 +29,17 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
32 |
torch_dtype=torch.bfloat16,
|
33 |
attn_implementation="eager"
|
34 |
)
|
35 |
-
|
36 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
37 |
|
38 |
-
|
39 |
##################################################
|
40 |
-
# 1) CSV, TXT, PDF ๋ถ์ ํจ์
|
41 |
##################################################
|
42 |
def analyze_csv_file(path: str) -> str:
|
43 |
-
"""CSV ํ์ผ -> ๋ฌธ์์ด. ๊ธธ๋ฉด ์๋ผ๋."""
|
44 |
try:
|
45 |
df = pd.read_csv(path)
|
46 |
-
df_str = df.to_string()
|
|
|
|
|
47 |
if len(df_str) > MAX_CONTENT_CHARS:
|
48 |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
49 |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
@@ -52,10 +48,11 @@ def analyze_csv_file(path: str) -> str:
|
|
52 |
|
53 |
|
54 |
def analyze_txt_file(path: str) -> str:
|
55 |
-
"""TXT ํ์ผ -> ์ ์ฒด ๋ฌธ์์ด. ๊ธธ๋ฉด ์๋ผ๋."""
|
56 |
try:
|
57 |
with open(path, "r", encoding="utf-8") as f:
|
58 |
-
text = f.read()
|
|
|
|
|
59 |
if len(text) > MAX_CONTENT_CHARS:
|
60 |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
61 |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
@@ -64,28 +61,26 @@ def analyze_txt_file(path: str) -> str:
|
|
64 |
|
65 |
|
66 |
def pdf_to_markdown(pdf_path: str) -> str:
|
67 |
-
"""PDF -> ํ
์คํธ ์ถ์ถ -> Markdown. ๊ธธ๋ฉด ์๋ผ๋."""
|
68 |
try:
|
69 |
-
text_chunks = []
|
70 |
with open(pdf_path, "rb") as f:
|
71 |
reader = PyPDF2.PdfReader(f)
|
|
|
72 |
for page_num, page in enumerate(reader.pages, start=1):
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
79 |
|
80 |
-
full_text = "\n".join(text_chunks)
|
81 |
-
if len(full_text) > MAX_CONTENT_CHARS:
|
82 |
-
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
83 |
-
|
84 |
-
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
85 |
-
|
86 |
|
87 |
##################################################
|
88 |
-
# 2) ์ด๋ฏธ์ง/๋น๋์ค ์ ํ
|
89 |
##################################################
|
90 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
91 |
image_count = 0
|
@@ -102,9 +97,9 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
102 |
image_count = 0
|
103 |
video_count = 0
|
104 |
for item in history:
|
|
|
105 |
if item["role"] != "user" or isinstance(item["content"], str):
|
106 |
continue
|
107 |
-
# item["content"]๊ฐ ["๊ฒฝ๋ก"] ํํ์ผ ๋, ํ์ฅ์๋ฅผ ํ์ธ
|
108 |
file_path = item["content"][0]
|
109 |
if file_path.endswith(".mp4"):
|
110 |
video_count += 1
|
@@ -115,11 +110,10 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
115 |
|
116 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
117 |
"""
|
118 |
-
|
119 |
"""
|
120 |
media_files = []
|
121 |
for f in message["files"]:
|
122 |
-
# ์ด๋ฏธ์ง/๋น๋์ค๋ง
|
123 |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
124 |
media_files.append(f)
|
125 |
|
@@ -132,7 +126,7 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
132 |
if video_count > 1:
|
133 |
gr.Warning("Only one video is supported.")
|
134 |
return False
|
135 |
-
#
|
136 |
if video_count == 1:
|
137 |
if image_count > 0:
|
138 |
gr.Warning("Mixing images and videos is not allowed.")
|
@@ -144,7 +138,7 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
144 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
145 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
146 |
return False
|
147 |
-
# <image>
|
148 |
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
|
149 |
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
150 |
return False
|
@@ -182,7 +176,6 @@ def process_video(video_path: str) -> list[dict]:
|
|
182 |
pil_image.save(temp_file.name)
|
183 |
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
184 |
content.append({"type": "image", "url": temp_file.name})
|
185 |
-
logger.debug(f"{content=}")
|
186 |
return content
|
187 |
|
188 |
|
@@ -206,46 +199,51 @@ def process_interleaved_images(message: dict) -> list[dict]:
|
|
206 |
|
207 |
|
208 |
##################################################
|
209 |
-
# 5) CSV/PDF/TXT
|
210 |
##################################################
|
211 |
def process_new_user_message(message: dict) -> list[dict]:
|
|
|
212 |
if not message["files"]:
|
213 |
-
return [{"type": "text", "text":
|
214 |
|
215 |
-
# ํ์ฅ์๋ณ ๋ถ๋ฅ
|
216 |
video_files = [f for f in message["files"] if f.endswith(".mp4")]
|
217 |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
218 |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
219 |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
220 |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
221 |
|
222 |
-
|
223 |
-
content_list = [{"type": "text", "text": message["text"]}]
|
224 |
|
225 |
# CSV
|
226 |
for csv_path in csv_files:
|
227 |
csv_analysis = analyze_csv_file(csv_path)
|
|
|
|
|
228 |
content_list.append({"type": "text", "text": csv_analysis})
|
229 |
|
230 |
# TXT
|
231 |
for txt_path in txt_files:
|
232 |
txt_analysis = analyze_txt_file(txt_path)
|
|
|
|
|
233 |
content_list.append({"type": "text", "text": txt_analysis})
|
234 |
|
235 |
# PDF
|
236 |
for pdf_path in pdf_files:
|
237 |
-
|
238 |
-
|
|
|
|
|
239 |
|
240 |
-
# ๋น๋์ค
|
241 |
if video_files:
|
|
|
242 |
content_list += process_video(video_files[0])
|
243 |
return content_list
|
244 |
|
245 |
-
|
246 |
-
if "<image>" in message["text"]:
|
247 |
return process_interleaved_images(message)
|
248 |
else:
|
|
|
249 |
for img_path in image_files:
|
250 |
content_list.append({"type": "image", "url": img_path})
|
251 |
|
@@ -253,13 +251,9 @@ def process_new_user_message(message: dict) -> list[dict]:
|
|
253 |
|
254 |
|
255 |
##################################################
|
256 |
-
# 6) ํ์คํ ๋ฆฌ -> LLM ๋ฉ์์ง ๋ณํ
|
257 |
##################################################
|
258 |
def process_history(history: list[dict]) -> list[dict]:
|
259 |
-
"""
|
260 |
-
์ฌ๊ธฐ์, ์ด๋ฏธ์ง/๋น๋์ค ์ธ์ ํ์ผ(.csv, .pdf, .txt) ๊ฒฝ๋ก๋
|
261 |
-
๋ชจ๋ธ๋ก ์ ๋ฌ๋์ง ์๋๋ก ์ ๊ฑฐ (or ๋ฌด์)
|
262 |
-
"""
|
263 |
messages = []
|
264 |
current_user_content = []
|
265 |
for item in history:
|
@@ -267,71 +261,84 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
267 |
if current_user_content:
|
268 |
messages.append({"role": "user", "content": current_user_content})
|
269 |
current_user_content = []
|
270 |
-
# assistant -> ๊ทธ๋ฅ ํ
์คํธ๋ก
|
271 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
272 |
else:
|
273 |
# user
|
274 |
content = item["content"]
|
275 |
if isinstance(content, str):
|
276 |
-
# ๋จ์ ํ
์คํธ
|
277 |
current_user_content.append({"type": "text", "text": content})
|
278 |
else:
|
279 |
-
#
|
280 |
-
|
281 |
-
#
|
282 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$",
|
283 |
-
current_user_content.append({"type": "image", "url":
|
284 |
else:
|
285 |
-
# csv, pdf, txt ๋ฑ์ ์ ๊ฑฐ
|
286 |
pass
|
287 |
return messages
|
288 |
|
289 |
|
290 |
##################################################
|
291 |
-
# 7) ๋ฉ์ธ ์ถ๋ก
|
292 |
##################################################
|
293 |
@spaces.GPU(duration=120)
|
294 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
295 |
-
# a) ๋ฏธ๋์ด ์ ํ ๊ฒ์ฌ
|
296 |
if not validate_media_constraints(message, history):
|
297 |
yield ""
|
298 |
return
|
299 |
|
300 |
-
# b) ๊ธฐ์กด ํ์คํ ๋ฆฌ -> LLM ๋ฉ์์ง
|
301 |
messages = []
|
302 |
if system_prompt:
|
303 |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
304 |
messages.extend(process_history(history))
|
305 |
-
messages.append({"role": "user", "content": process_new_user_message(message)})
|
306 |
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
309 |
messages,
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
return_tensors="pt",
|
314 |
-
|
|
|
|
|
315 |
|
316 |
-
|
|
|
317 |
gen_kwargs = {
|
318 |
-
"inputs": inputs,
|
|
|
319 |
"streamer": streamer,
|
320 |
"max_new_tokens": max_new_tokens,
|
|
|
|
|
|
|
321 |
}
|
|
|
|
|
322 |
t = Thread(target=model.generate, kwargs=gen_kwargs)
|
323 |
t.start()
|
324 |
|
325 |
output = ""
|
326 |
-
for
|
327 |
-
output +=
|
328 |
yield output
|
329 |
|
330 |
|
331 |
-
|
332 |
-
|
333 |
##################################################
|
334 |
-
#
|
335 |
##################################################
|
336 |
examples = [
|
337 |
|
@@ -463,17 +470,10 @@ examples = [
|
|
463 |
]
|
464 |
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
##################################################
|
470 |
-
# 9) Gradio ChatInterface
|
471 |
-
##################################################
|
472 |
demo = gr.ChatInterface(
|
473 |
fn=run,
|
474 |
type="messages",
|
475 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
476 |
-
# ์ด๋ฏธ์ง(์ฌ๋ฌ ํ์ฅ์), mp4, csv, txt, pdf ํ์ฉ
|
477 |
textbox=gr.MultimodalTextbox(
|
478 |
file_types=[
|
479 |
".png", ".jpg", ".jpeg", ".gif", ".webp",
|
@@ -488,13 +488,7 @@ demo = gr.ChatInterface(
|
|
488 |
label="System Prompt",
|
489 |
value="You are a deeply thoughtful AI. Consider problems thoroughly and derive correct solutions through systematic reasoning. Please answer in korean."
|
490 |
),
|
491 |
-
gr.Slider(
|
492 |
-
label="Max New Tokens",
|
493 |
-
minimum=100,
|
494 |
-
maximum=8000,
|
495 |
-
step=50,
|
496 |
-
value=2000
|
497 |
-
),
|
498 |
],
|
499 |
stop_btn=False,
|
500 |
title="Gemma 3 27B IT",
|
@@ -505,7 +499,5 @@ demo = gr.ChatInterface(
|
|
505 |
delete_cache=(1800, 1800),
|
506 |
)
|
507 |
|
508 |
-
|
509 |
if __name__ == "__main__":
|
510 |
demo.launch()
|
511 |
-
|
|
|
13 |
from loguru import logger
|
14 |
from PIL import Image
|
15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
|
|
|
|
16 |
import pandas as pd
|
|
|
17 |
import PyPDF2
|
18 |
|
19 |
##################################################
|
20 |
+
# ๊ธฐ๋ณธ ์ค์
|
21 |
##################################################
|
22 |
+
MAX_CONTENT_CHARS = 8000 # ํ
์คํธ๋ก ์ ๋ฌ ์ ์ต๋ ๊ธ์ ์
|
23 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
24 |
|
25 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
|
|
29 |
torch_dtype=torch.bfloat16,
|
30 |
attn_implementation="eager"
|
31 |
)
|
|
|
32 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
33 |
|
|
|
34 |
##################################################
|
35 |
+
# 1) CSV, TXT, PDF ๋ถ์ ํจ์ (๋น ํ์ผ ๋๋น)
|
36 |
##################################################
|
37 |
def analyze_csv_file(path: str) -> str:
|
|
|
38 |
try:
|
39 |
df = pd.read_csv(path)
|
40 |
+
df_str = df.to_string().strip()
|
41 |
+
if not df_str:
|
42 |
+
df_str = "(CSV is empty)"
|
43 |
if len(df_str) > MAX_CONTENT_CHARS:
|
44 |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
45 |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
|
|
48 |
|
49 |
|
50 |
def analyze_txt_file(path: str) -> str:
|
|
|
51 |
try:
|
52 |
with open(path, "r", encoding="utf-8") as f:
|
53 |
+
text = f.read().strip()
|
54 |
+
if not text:
|
55 |
+
text = "(TXT is empty)"
|
56 |
if len(text) > MAX_CONTENT_CHARS:
|
57 |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
58 |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
|
|
61 |
|
62 |
|
63 |
def pdf_to_markdown(pdf_path: str) -> str:
|
|
|
64 |
try:
|
|
|
65 |
with open(pdf_path, "rb") as f:
|
66 |
reader = PyPDF2.PdfReader(f)
|
67 |
+
chunks = []
|
68 |
for page_num, page in enumerate(reader.pages, start=1):
|
69 |
+
ptext = (page.extract_text() or "").strip()
|
70 |
+
if ptext:
|
71 |
+
chunks.append(f"## Page {page_num}\n\n{ptext}\n")
|
72 |
+
full_text = "\n".join(chunks).strip()
|
73 |
+
if not full_text:
|
74 |
+
full_text = "(PDF is empty)"
|
75 |
+
if len(full_text) > MAX_CONTENT_CHARS:
|
76 |
+
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
77 |
+
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
78 |
except Exception as e:
|
79 |
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
##################################################
|
83 |
+
# 2) ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ
|
84 |
##################################################
|
85 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
86 |
image_count = 0
|
|
|
97 |
image_count = 0
|
98 |
video_count = 0
|
99 |
for item in history:
|
100 |
+
# assistant ๋๋ content๊ฐ str์ด๋ฉด ์ ์ธ
|
101 |
if item["role"] != "user" or isinstance(item["content"], str):
|
102 |
continue
|
|
|
103 |
file_path = item["content"][0]
|
104 |
if file_path.endswith(".mp4"):
|
105 |
video_count += 1
|
|
|
110 |
|
111 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
112 |
"""
|
113 |
+
์ด๋ฏธ์ง/๋น๋์ค ๊ฐ์ ์ ํ
|
114 |
"""
|
115 |
media_files = []
|
116 |
for f in message["files"]:
|
|
|
117 |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
118 |
media_files.append(f)
|
119 |
|
|
|
126 |
if video_count > 1:
|
127 |
gr.Warning("Only one video is supported.")
|
128 |
return False
|
129 |
+
# ๋น๋์ค+์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ
|
130 |
if video_count == 1:
|
131 |
if image_count > 0:
|
132 |
gr.Warning("Mixing images and videos is not allowed.")
|
|
|
138 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
139 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
140 |
return False
|
141 |
+
# <image> ํ๊ทธ ์์ ์ด๋ฏธ์ง ํ์ผ ์ ์ผ์น
|
142 |
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
|
143 |
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
144 |
return False
|
|
|
176 |
pil_image.save(temp_file.name)
|
177 |
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
178 |
content.append({"type": "image", "url": temp_file.name})
|
|
|
179 |
return content
|
180 |
|
181 |
|
|
|
199 |
|
200 |
|
201 |
##################################################
|
202 |
+
# 5) CSV/PDF/TXT = ํ
์คํธ / ์ด๋ฏธ์ง,๋น๋์ค = ์ค์ ๊ฒฝ๋ก
|
203 |
##################################################
|
204 |
def process_new_user_message(message: dict) -> list[dict]:
|
205 |
+
user_text = (message["text"] or "").strip() or "(No text)"
|
206 |
if not message["files"]:
|
207 |
+
return [{"type": "text", "text": user_text}]
|
208 |
|
|
|
209 |
video_files = [f for f in message["files"] if f.endswith(".mp4")]
|
210 |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
211 |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
212 |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
213 |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
214 |
|
215 |
+
content_list = [{"type": "text", "text": user_text}]
|
|
|
216 |
|
217 |
# CSV
|
218 |
for csv_path in csv_files:
|
219 |
csv_analysis = analyze_csv_file(csv_path)
|
220 |
+
if not csv_analysis.strip():
|
221 |
+
csv_analysis = "(No CSV content?)"
|
222 |
content_list.append({"type": "text", "text": csv_analysis})
|
223 |
|
224 |
# TXT
|
225 |
for txt_path in txt_files:
|
226 |
txt_analysis = analyze_txt_file(txt_path)
|
227 |
+
if not txt_analysis.strip():
|
228 |
+
txt_analysis = "(No TXT content?)"
|
229 |
content_list.append({"type": "text", "text": txt_analysis})
|
230 |
|
231 |
# PDF
|
232 |
for pdf_path in pdf_files:
|
233 |
+
pdf_md = pdf_to_markdown(pdf_path)
|
234 |
+
if not pdf_md.strip():
|
235 |
+
pdf_md = "(No PDF content?)"
|
236 |
+
content_list.append({"type": "text", "text": pdf_md})
|
237 |
|
|
|
238 |
if video_files:
|
239 |
+
# ํ๋๋ง ์ฒ๋ฆฌ
|
240 |
content_list += process_video(video_files[0])
|
241 |
return content_list
|
242 |
|
243 |
+
if "<image>" in user_text:
|
|
|
244 |
return process_interleaved_images(message)
|
245 |
else:
|
246 |
+
# ์ผ๋ฐ ์ด๋ฏธ์ง
|
247 |
for img_path in image_files:
|
248 |
content_list.append({"type": "image", "url": img_path})
|
249 |
|
|
|
251 |
|
252 |
|
253 |
##################################################
|
254 |
+
# 6) ํ์คํ ๋ฆฌ -> LLM ๋ฉ์์ง ๋ณํ (๋น์ด๋ฏธ์ง ๊ฒฝ๋ก๋ ๋ฌด์)
|
255 |
##################################################
|
256 |
def process_history(history: list[dict]) -> list[dict]:
|
|
|
|
|
|
|
|
|
257 |
messages = []
|
258 |
current_user_content = []
|
259 |
for item in history:
|
|
|
261 |
if current_user_content:
|
262 |
messages.append({"role": "user", "content": current_user_content})
|
263 |
current_user_content = []
|
|
|
264 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
265 |
else:
|
266 |
# user
|
267 |
content = item["content"]
|
268 |
if isinstance(content, str):
|
|
|
269 |
current_user_content.append({"type": "text", "text": content})
|
270 |
else:
|
271 |
+
# [ํ์ผ๊ฒฝ๋ก]
|
272 |
+
fpath = content[0]
|
273 |
+
# ์ด๋ฏธ์ง๋ mp4๋ง ์ ์ง, ๋๋จธ์ง๋ ์ ์ธ
|
274 |
+
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", fpath, re.IGNORECASE) or fpath.endswith(".mp4"):
|
275 |
+
current_user_content.append({"type": "image", "url": fpath})
|
276 |
else:
|
|
|
277 |
pass
|
278 |
return messages
|
279 |
|
280 |
|
281 |
##################################################
|
282 |
+
# 7) ๋ฉ์ธ ์ถ๋ก (๋น ํ ํฐ ๋ฐฉ์ด)
|
283 |
##################################################
|
284 |
@spaces.GPU(duration=120)
|
285 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
|
|
286 |
if not validate_media_constraints(message, history):
|
287 |
yield ""
|
288 |
return
|
289 |
|
|
|
290 |
messages = []
|
291 |
if system_prompt:
|
292 |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
293 |
messages.extend(process_history(history))
|
|
|
294 |
|
295 |
+
user_content = process_new_user_message(message)
|
296 |
+
messages.append({"role": "user", "content": user_content})
|
297 |
+
|
298 |
+
# 1) tokenize=False ํ ํ ํฐ ๊ธธ์ด ์ฒดํฌ
|
299 |
+
raw_text = processor.tokenizer.apply_chat_template(
|
300 |
messages,
|
301 |
+
tokenize=False,
|
302 |
+
add_generation_prompt=True
|
303 |
+
)
|
304 |
+
token_ids = processor.tokenizer.encode(raw_text, add_special_tokens=False)
|
305 |
+
if len(token_ids) == 0:
|
306 |
+
# ๋น ์
๋ ฅ โ ์์ ๋ฌธ๊ตฌ ์ถ๊ฐ
|
307 |
+
raw_text += " (No content?)"
|
308 |
+
token_ids = processor.tokenizer.encode(raw_text, add_special_tokens=False)
|
309 |
+
|
310 |
+
# 2) ์ค์ tokenizer
|
311 |
+
inputs = processor.tokenizer(
|
312 |
+
raw_text,
|
313 |
return_tensors="pt",
|
314 |
+
padding=True
|
315 |
+
)
|
316 |
+
inputs = {k: v.to(model.device, dtype=torch.bfloat16) for k, v in inputs.items()}
|
317 |
|
318 |
+
# 3) ์คํธ๋ฆฌ๋ฐ ์์ฑ
|
319 |
+
streamer = TextIteratorStreamer(processor.tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
320 |
gen_kwargs = {
|
321 |
+
"inputs": inputs["input_ids"],
|
322 |
+
"attention_mask": inputs.get("attention_mask"),
|
323 |
"streamer": streamer,
|
324 |
"max_new_tokens": max_new_tokens,
|
325 |
+
"do_sample": True,
|
326 |
+
"temperature": 0.3,
|
327 |
+
"top_p": 0.95,
|
328 |
}
|
329 |
+
gen_kwargs = {k: v for k, v in gen_kwargs.items() if v is not None}
|
330 |
+
|
331 |
t = Thread(target=model.generate, kwargs=gen_kwargs)
|
332 |
t.start()
|
333 |
|
334 |
output = ""
|
335 |
+
for chunk in streamer:
|
336 |
+
output += chunk
|
337 |
yield output
|
338 |
|
339 |
|
|
|
|
|
340 |
##################################################
|
341 |
+
# 8) ์์
|
342 |
##################################################
|
343 |
examples = [
|
344 |
|
|
|
470 |
]
|
471 |
|
472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
demo = gr.ChatInterface(
|
474 |
fn=run,
|
475 |
type="messages",
|
476 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
|
|
477 |
textbox=gr.MultimodalTextbox(
|
478 |
file_types=[
|
479 |
".png", ".jpg", ".jpeg", ".gif", ".webp",
|
|
|
488 |
label="System Prompt",
|
489 |
value="You are a deeply thoughtful AI. Consider problems thoroughly and derive correct solutions through systematic reasoning. Please answer in korean."
|
490 |
),
|
491 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
],
|
493 |
stop_btn=False,
|
494 |
title="Gemma 3 27B IT",
|
|
|
499 |
delete_cache=(1800, 1800),
|
500 |
)
|
501 |
|
|
|
502 |
if __name__ == "__main__":
|
503 |
demo.launch()
|
|