Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app-backup.py
Browse files- app-backup.py +124 -170
    	
        app-backup.py
    CHANGED
    
    | @@ -5,8 +5,8 @@ import re | |
| 5 | 
             
            import tempfile
         | 
| 6 | 
             
            from collections.abc import Iterator
         | 
| 7 | 
             
            from threading import Thread
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            import requests | 
| 10 | 
             
            import cv2
         | 
| 11 | 
             
            import gradio as gr
         | 
| 12 | 
             
            import spaces
         | 
| @@ -17,23 +17,36 @@ from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIter | |
| 17 |  | 
| 18 | 
             
            # CSV/TXT ๋ถ์
         | 
| 19 | 
             
            import pandas as pd
         | 
| 20 | 
            -
             | 
| 21 | 
             
            # PDF ํ
์คํธ ์ถ์ถ
         | 
| 22 | 
             
            import PyPDF2
         | 
| 23 |  | 
| 24 | 
             
            ##############################################################################
         | 
| 25 | 
            -
            # SERPHouse API key  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
            ##############################################################################
         | 
| 27 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 |  | 
| 29 | 
             
            ##############################################################################
         | 
| 30 | 
            -
            #  | 
| 31 | 
            -
            #  | 
| 32 | 
             
            ##############################################################################
         | 
| 33 | 
             
            def do_web_search(query: str) -> str:
         | 
| 34 | 
             
                """
         | 
| 35 | 
            -
                 | 
| 36 | 
            -
                 | 
| 37 | 
             
                """
         | 
| 38 | 
             
                try:
         | 
| 39 | 
             
                    url = "https://api.serphouse.com/serp/live"
         | 
| @@ -43,35 +56,35 @@ def do_web_search(query: str) -> str: | |
| 43 | 
             
                        "lang": "en",
         | 
| 44 | 
             
                        "device": "desktop",
         | 
| 45 | 
             
                        "serp_type": "web",
         | 
|  | |
| 46 | 
             
                        "api_token": SERPHOUSE_API_KEY,
         | 
| 47 | 
             
                    }
         | 
| 48 | 
             
                    resp = requests.get(url, params=params, timeout=30)
         | 
| 49 | 
            -
                    resp.raise_for_status() | 
| 50 | 
             
                    data = resp.json()
         | 
| 51 |  | 
| 52 | 
            -
                    # For demonstration, let's extract top 3 organic results:
         | 
| 53 | 
             
                    results = data.get("results", {})
         | 
| 54 | 
             
                    organic = results.get("results", {}).get("organic", [])
         | 
| 55 | 
             
                    if not organic:
         | 
| 56 | 
             
                        return "No web search results found."
         | 
| 57 |  | 
| 58 | 
             
                    summary_lines = []
         | 
| 59 | 
            -
                    for item in organic[: | 
| 60 | 
            -
                         | 
| 61 | 
            -
                         | 
| 62 | 
            -
             | 
| 63 | 
            -
             | 
| 64 | 
            -
                        summary_lines.append(f"**Rank {rank}:** [{title}]({link})\n\n> {snippet}")
         | 
| 65 | 
            -
             | 
| 66 | 
            -
                    return "\n\n".join(summary_lines) if summary_lines else "No web search results found."
         | 
| 67 | 
             
                except Exception as e:
         | 
| 68 | 
             
                    logger.error(f"Web search failed: {e}")
         | 
| 69 | 
             
                    return f"Web search failed: {str(e)}"
         | 
| 70 |  | 
| 71 |  | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
|  | |
|  | |
| 74 | 
             
            model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
         | 
|  | |
| 75 | 
             
            processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
         | 
| 76 | 
             
            model = Gemma3ForConditionalGeneration.from_pretrained(
         | 
| 77 | 
             
                model_id,
         | 
| @@ -79,23 +92,20 @@ model = Gemma3ForConditionalGeneration.from_pretrained( | |
| 79 | 
             
                torch_dtype=torch.bfloat16,
         | 
| 80 | 
             
                attn_implementation="eager"
         | 
| 81 | 
             
            )
         | 
| 82 | 
            -
             | 
| 83 | 
             
            MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
         | 
| 84 |  | 
| 85 |  | 
| 86 | 
            -
             | 
| 87 | 
             
            # CSV, TXT, PDF ๋ถ์ ํจ์
         | 
| 88 | 
            -
             | 
| 89 | 
             
            def analyze_csv_file(path: str) -> str:
         | 
| 90 | 
             
                """
         | 
| 91 | 
             
                CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
         | 
| 92 | 
             
                """
         | 
| 93 | 
             
                try:
         | 
| 94 | 
             
                    df = pd.read_csv(path)
         | 
| 95 | 
            -
                    # ๋ฐ์ดํฐ ํ๋ ์ ํฌ๊ธฐ ์ ํ (ํ/์ด ์๊ฐ ๋ง์ ๊ฒฝ์ฐ)
         | 
| 96 | 
             
                    if df.shape[0] > 50 or df.shape[1] > 10:
         | 
| 97 | 
             
                        df = df.iloc[:50, :10]
         | 
| 98 | 
            -
                        
         | 
| 99 | 
             
                    df_str = df.to_string()
         | 
| 100 | 
             
                    if len(df_str) > MAX_CONTENT_CHARS:
         | 
| 101 | 
             
                        df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
         | 
| @@ -126,18 +136,15 @@ def pdf_to_markdown(pdf_path: str) -> str: | |
| 126 | 
             
                try:
         | 
| 127 | 
             
                    with open(pdf_path, "rb") as f:
         | 
| 128 | 
             
                        reader = PyPDF2.PdfReader(f)
         | 
| 129 | 
            -
                        # ์ต๋ 5ํ์ด์ง๋ง ์ฒ๋ฆฌ
         | 
| 130 | 
             
                        max_pages = min(5, len(reader.pages))
         | 
| 131 | 
             
                        for page_num in range(max_pages):
         | 
| 132 | 
             
                            page = reader.pages[page_num]
         | 
| 133 | 
             
                            page_text = page.extract_text() or ""
         | 
| 134 | 
             
                            page_text = page_text.strip()
         | 
| 135 | 
             
                            if page_text:
         | 
| 136 | 
            -
                                # ํ์ด์ง๋ณ ํ
์คํธ๋ ์ ํ
         | 
| 137 | 
             
                                if len(page_text) > MAX_CONTENT_CHARS // max_pages:
         | 
| 138 | 
             
                                    page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
         | 
| 139 | 
             
                                text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
         | 
| 140 | 
            -
                        
         | 
| 141 | 
             
                        if len(reader.pages) > max_pages:
         | 
| 142 | 
             
                            text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
         | 
| 143 | 
             
                except Exception as e:
         | 
| @@ -150,9 +157,9 @@ def pdf_to_markdown(pdf_path: str) -> str: | |
| 150 | 
             
                return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
         | 
| 151 |  | 
| 152 |  | 
| 153 | 
            -
             | 
| 154 | 
             
            # ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
         | 
| 155 | 
            -
             | 
| 156 | 
             
            def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
         | 
| 157 | 
             
                image_count = 0
         | 
| 158 | 
             
                video_count = 0
         | 
| @@ -181,14 +188,6 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
| 181 |  | 
| 182 |  | 
| 183 | 
             
            def validate_media_constraints(message: dict, history: list[dict]) -> bool:
         | 
| 184 | 
            -
                """
         | 
| 185 | 
            -
                - ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ
         | 
| 186 | 
            -
                - ๋น๋์ค์ ์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ
         | 
| 187 | 
            -
                - ์ด๋ฏธ์ง ๊ฐ์ MAX_NUM_IMAGES ์ด๊ณผ ๋ถ๊ฐ
         | 
| 188 | 
            -
                - <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ค์  ์ด๋ฏธ์ง ์ ์ผ์น
         | 
| 189 | 
            -
                - CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง ์์
         | 
| 190 | 
            -
                """
         | 
| 191 | 
            -
                # ์ด๋ฏธ์ง์ ๋น๋์ค ํ์ผ๋ง ํํฐ๋ง
         | 
| 192 | 
             
                media_files = []
         | 
| 193 | 
             
                for f in message["files"]:
         | 
| 194 | 
             
                    if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
         | 
| @@ -213,9 +212,7 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
| 213 | 
             
                    gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
         | 
| 214 | 
             
                    return False
         | 
| 215 |  | 
| 216 | 
            -
                # ์ด๋ฏธ์ง ํ๊ทธ ๊ฒ์ฆ (์ค์  ์ด๋ฏธ์ง ํ์ผ๋ง ๊ณ์ฐ)
         | 
| 217 | 
             
                if "<image>" in message["text"]:
         | 
| 218 | 
            -
                    # ์ด๋ฏธ์ง ํ์ผ๋ง ํํฐ๋ง
         | 
| 219 | 
             
                    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
         | 
| 220 | 
             
                    image_tag_count = message["text"].count("<image>")
         | 
| 221 | 
             
                    if image_tag_count != len(image_files):
         | 
| @@ -225,16 +222,14 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
| 225 | 
             
                return True
         | 
| 226 |  | 
| 227 |  | 
| 228 | 
            -
             | 
| 229 | 
             
            # ๋น๋์ค ์ฒ๋ฆฌ
         | 
| 230 | 
            -
             | 
| 231 | 
             
            def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
         | 
| 232 | 
             
                vidcap = cv2.VideoCapture(video_path)
         | 
| 233 | 
             
                fps = vidcap.get(cv2.CAP_PROP_FPS)
         | 
| 234 | 
             
                total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
         | 
| 235 | 
            -
             | 
| 236 | 
            -
                # ๋ ์ ์ ํ๋ ์์ ์ถ์ถํ๋๋ก ์กฐ์ 
         | 
| 237 | 
            -
                frame_interval = max(int(fps), int(total_frames / 10))  # ์ด๋น 1ํ๋ ์ ๋๋ ์ต๋ 10ํ๋ ์
         | 
| 238 | 
             
                frames = []
         | 
| 239 |  | 
| 240 | 
             
                for i in range(0, total_frames, frame_interval):
         | 
| @@ -245,8 +240,6 @@ def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
| 245 | 
             
                        pil_image = Image.fromarray(image)
         | 
| 246 | 
             
                        timestamp = round(i / fps, 2)
         | 
| 247 | 
             
                        frames.append((pil_image, timestamp))
         | 
| 248 | 
            -
                        
         | 
| 249 | 
            -
                        # ์ต๋ 5ํ๋ ์๋ง ์ฌ์ฉ
         | 
| 250 | 
             
                        if len(frames) >= 5:
         | 
| 251 | 
             
                            break
         | 
| 252 |  | 
| @@ -267,15 +260,14 @@ def process_video(video_path: str) -> list[dict]: | |
| 267 | 
             
                return content
         | 
| 268 |  | 
| 269 |  | 
| 270 | 
            -
             | 
| 271 | 
             
            # interleaved <image> ์ฒ๋ฆฌ
         | 
| 272 | 
            -
             | 
| 273 | 
             
            def process_interleaved_images(message: dict) -> list[dict]:
         | 
| 274 | 
             
                parts = re.split(r"(<image>)", message["text"])
         | 
| 275 | 
             
                content = []
         | 
| 276 | 
             
                image_index = 0
         | 
| 277 |  | 
| 278 | 
            -
                # ์ด๋ฏธ์ง ํ์ผ๋ง ํํฐ๋ง
         | 
| 279 | 
             
                image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
         | 
| 280 |  | 
| 281 | 
             
                for part in parts:
         | 
| @@ -285,98 +277,81 @@ def process_interleaved_images(message: dict) -> list[dict]: | |
| 285 | 
             
                    elif part.strip():
         | 
| 286 | 
             
                        content.append({"type": "text", "text": part.strip()})
         | 
| 287 | 
             
                    else:
         | 
| 288 | 
            -
                        # ๊ณต๋ฐฑ์ด๊ฑฐ๋ \n ๊ฐ์ ๊ฒฝ์ฐ
         | 
| 289 | 
             
                        if isinstance(part, str) and part != "<image>":
         | 
| 290 | 
             
                            content.append({"type": "text", "text": part})
         | 
| 291 | 
             
                return content
         | 
| 292 |  | 
| 293 |  | 
| 294 | 
            -
             | 
| 295 | 
             
            # PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
         | 
| 296 | 
            -
             | 
| 297 | 
             
            def is_image_file(file_path: str) -> bool:
         | 
| 298 | 
            -
                """์ด๋ฏธ์ง ํ์ผ์ธ์ง ํ์ธ"""
         | 
| 299 | 
             
                return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
         | 
| 300 |  | 
| 301 | 
            -
             | 
| 302 | 
             
            def is_video_file(file_path: str) -> bool:
         | 
| 303 | 
            -
                """๋น๋์ค ํ์ผ์ธ์ง ํ์ธ"""
         | 
| 304 | 
             
                return file_path.endswith(".mp4")
         | 
| 305 |  | 
| 306 | 
            -
             | 
| 307 | 
             
            def is_document_file(file_path: str) -> bool:
         | 
| 308 | 
            -
                 | 
| 309 | 
            -
             | 
| 310 | 
            -
             | 
| 311 | 
            -
             | 
|  | |
| 312 |  | 
| 313 |  | 
| 314 | 
             
            def process_new_user_message(message: dict) -> list[dict]:
         | 
| 315 | 
             
                if not message["files"]:
         | 
| 316 | 
             
                    return [{"type": "text", "text": message["text"]}]
         | 
| 317 |  | 
| 318 | 
            -
                # 1) ํ์ผ ๋ถ๋ฅ
         | 
| 319 | 
             
                video_files = [f for f in message["files"] if is_video_file(f)]
         | 
| 320 | 
             
                image_files = [f for f in message["files"] if is_image_file(f)]
         | 
| 321 | 
             
                csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
         | 
| 322 | 
             
                txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
         | 
| 323 | 
             
                pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
         | 
| 324 |  | 
| 325 | 
            -
                # 2) ์ฌ์ฉ์ ์๋ณธ text ์ถ๊ฐ
         | 
| 326 | 
             
                content_list = [{"type": "text", "text": message["text"]}]
         | 
| 327 |  | 
| 328 | 
            -
                # 3) CSV
         | 
| 329 | 
             
                for csv_path in csv_files:
         | 
| 330 | 
             
                    csv_analysis = analyze_csv_file(csv_path)
         | 
| 331 | 
             
                    content_list.append({"type": "text", "text": csv_analysis})
         | 
| 332 |  | 
| 333 | 
            -
                # 4) TXT
         | 
| 334 | 
             
                for txt_path in txt_files:
         | 
| 335 | 
             
                    txt_analysis = analyze_txt_file(txt_path)
         | 
| 336 | 
             
                    content_list.append({"type": "text", "text": txt_analysis})
         | 
| 337 |  | 
| 338 | 
            -
                # 5) PDF
         | 
| 339 | 
             
                for pdf_path in pdf_files:
         | 
| 340 | 
             
                    pdf_markdown = pdf_to_markdown(pdf_path)
         | 
| 341 | 
             
                    content_list.append({"type": "text", "text": pdf_markdown})
         | 
| 342 |  | 
| 343 | 
            -
                # 6) ๋น๋์ค (ํ ๊ฐ๋ง ํ์ฉ)
         | 
| 344 | 
             
                if video_files:
         | 
| 345 | 
             
                    content_list += process_video(video_files[0])
         | 
| 346 | 
             
                    return content_list
         | 
| 347 |  | 
| 348 | 
            -
                # 7) ์ด๋ฏธ์ง ์ฒ๋ฆฌ
         | 
| 349 | 
             
                if "<image>" in message["text"] and image_files:
         | 
| 350 | 
            -
                    # interleaved
         | 
| 351 | 
             
                    interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
         | 
| 352 | 
            -
                     | 
| 353 | 
            -
             | 
| 354 | 
            -
             | 
| 355 | 
            -
                    return interleaved_content + content_list  # interleaved + ๋๋จธ์ง ๋ฌธ์ ๋ถ์ ๋ด์ฉ
         | 
| 356 | 
             
                else:
         | 
| 357 | 
            -
                    # ์ผ๋ฐ ์ฌ๋ฌ ์ฅ
         | 
| 358 | 
             
                    for img_path in image_files:
         | 
| 359 | 
             
                        content_list.append({"type": "image", "url": img_path})
         | 
| 360 |  | 
| 361 | 
             
                return content_list
         | 
| 362 |  | 
| 363 |  | 
| 364 | 
            -
             | 
| 365 | 
             
            # history -> LLM ๋ฉ์์ง ๋ณํ
         | 
| 366 | 
            -
             | 
| 367 | 
             
            def process_history(history: list[dict]) -> list[dict]:
         | 
| 368 | 
             
                messages = []
         | 
| 369 | 
             
                current_user_content: list[dict] = []
         | 
| 370 | 
             
                for item in history:
         | 
| 371 | 
             
                    if item["role"] == "assistant":
         | 
| 372 | 
            -
                        # user_content๊ฐ ์์ฌ์๋ค๋ฉด user ๋ฉ์์ง๋ก ์ ์ฅ
         | 
| 373 | 
             
                        if current_user_content:
         | 
| 374 | 
             
                            messages.append({"role": "user", "content": current_user_content})
         | 
| 375 | 
             
                            current_user_content = []
         | 
| 376 | 
            -
                        # ๊ทธ ๋ค item์ assistant
         | 
| 377 | 
             
                        messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
         | 
| 378 | 
             
                    else:
         | 
| 379 | 
            -
                        # user
         | 
| 380 | 
             
                        content = item["content"]
         | 
| 381 | 
             
                        if isinstance(content, str):
         | 
| 382 | 
             
                            current_user_content.append({"type": "text", "text": content})
         | 
| @@ -385,19 +360,17 @@ def process_history(history: list[dict]) -> list[dict]: | |
| 385 | 
             
                            if is_image_file(file_path):
         | 
| 386 | 
             
                                current_user_content.append({"type": "image", "url": file_path})
         | 
| 387 | 
             
                            else:
         | 
| 388 | 
            -
                                # ๋น์ด๋ฏธ์ง ํ์ผ์ ํ
์คํธ๋ก ์ฒ๋ฆฌ
         | 
| 389 | 
             
                                current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
         | 
| 390 | 
            -
             | 
| 391 | 
            -
                # ๋ง์ง๋ง ์ฌ์ฉ์ ๋ฉ์์ง๊ฐ ์ฒ๋ฆฌ๋์ง ์์ ๊ฒฝ์ฐ ์ถ๊ฐ
         | 
| 392 | 
             
                if current_user_content:
         | 
| 393 | 
             
                    messages.append({"role": "user", "content": current_user_content})
         | 
| 394 |  | 
| 395 | 
             
                return messages
         | 
| 396 |  | 
| 397 |  | 
| 398 | 
            -
             | 
| 399 | 
            -
            # ๋ฉ์ธ ์ถ๋ก  ํจ์
         | 
| 400 | 
            -
             | 
| 401 | 
             
            @spaces.GPU(duration=120)
         | 
| 402 | 
             
            def run(
         | 
| 403 | 
             
                message: dict,
         | 
| @@ -407,60 +380,42 @@ def run( | |
| 407 | 
             
                use_web_search: bool = False,
         | 
| 408 | 
             
                web_search_query: str = "",
         | 
| 409 | 
             
            ) -> Iterator[str]:
         | 
| 410 | 
            -
             | 
| 411 | 
            -
                The main inference function. Now extended with optional web_search arguments:
         | 
| 412 | 
            -
                - use_web_search: bool
         | 
| 413 | 
            -
                - web_search_query: str
         | 
| 414 | 
            -
                If `use_web_search` is True, calls SERPHouse for the given `web_search_query`.
         | 
| 415 | 
            -
                """
         | 
| 416 | 
            -
                # Validate media constraints first
         | 
| 417 | 
             
                if not validate_media_constraints(message, history):
         | 
| 418 | 
             
                    yield ""
         | 
| 419 | 
             
                    return
         | 
| 420 |  | 
| 421 | 
             
                try:
         | 
| 422 | 
            -
                     | 
| 423 | 
            -
             | 
| 424 | 
            -
             | 
| 425 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 426 |  | 
| 427 | 
             
                    messages = []
         | 
| 428 | 
            -
                    if  | 
| 429 | 
            -
                        messages.append({ | 
|  | |
|  | |
|  | |
|  | |
| 430 | 
             
                    messages.extend(process_history(history))
         | 
| 431 | 
            -
             | 
| 432 | 
            -
                    # ์ฌ์ฉ์ ๋ฉ์์ง ์ฒ๋ฆฌ
         | 
| 433 | 
             
                    user_content = process_new_user_message(message)
         | 
| 434 | 
            -
                    
         | 
| 435 | 
            -
                    # ํ ํฐ ์๋ฅผ ์ค์ด๊ธฐ ์ํด ๋๋ฌด ๊ธด ํ
์คํธ๋ ์๋ผ๋ด๊ธฐ
         | 
| 436 | 
             
                    for item in user_content:
         | 
| 437 | 
             
                        if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
         | 
| 438 | 
             
                            item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
         | 
| 439 | 
            -
                    
         | 
| 440 | 
             
                    messages.append({"role": "user", "content": user_content})
         | 
| 441 |  | 
| 442 | 
            -
                    # ๋ชจ๋ธ ์
๋ ฅ ์์ฑ ์  ์ต์ข
 ํ์ธ
         | 
| 443 | 
            -
                    for msg in messages:
         | 
| 444 | 
            -
                        if msg["role"] != "user":
         | 
| 445 | 
            -
                            continue
         | 
| 446 | 
            -
                            
         | 
| 447 | 
            -
                        filtered_content = []
         | 
| 448 | 
            -
                        for item in msg["content"]:
         | 
| 449 | 
            -
                            if item["type"] == "image":
         | 
| 450 | 
            -
                                if is_image_file(item["url"]):
         | 
| 451 | 
            -
                                    filtered_content.append(item)
         | 
| 452 | 
            -
                                else:
         | 
| 453 | 
            -
                                    # ์ด๋ฏธ์ง ํ์ผ์ด ์๋ ๊ฒฝ์ฐ ํ
์คํธ๋ก ๋ณํ
         | 
| 454 | 
            -
                                    filtered_content.append({
         | 
| 455 | 
            -
                                        "type": "text", 
         | 
| 456 | 
            -
                                        "text": f"[Non-image file: {os.path.basename(item['url'])}]"
         | 
| 457 | 
            -
                                    })
         | 
| 458 | 
            -
                            else:
         | 
| 459 | 
            -
                                filtered_content.append(item)
         | 
| 460 | 
            -
                        
         | 
| 461 | 
            -
                        msg["content"] = filtered_content
         | 
| 462 | 
            -
             | 
| 463 | 
            -
                    # ๋ชจ๋ธ ์
๋ ฅ ์์ฑ
         | 
| 464 | 
             
                    inputs = processor.apply_chat_template(
         | 
| 465 | 
             
                        messages,
         | 
| 466 | 
             
                        add_generation_prompt=True,
         | 
| @@ -469,35 +424,46 @@ def run( | |
| 469 | 
             
                        return_tensors="pt",
         | 
| 470 | 
             
                    ).to(device=model.device, dtype=torch.bfloat16)
         | 
| 471 |  | 
| 472 | 
            -
                    # ํ
์คํธ ์์ฑ ์คํธ๋ฆฌ๋จธ ์ค์ 
         | 
| 473 | 
             
                    streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
         | 
| 474 | 
             
                    gen_kwargs = dict(
         | 
| 475 | 
             
                        inputs,
         | 
| 476 | 
             
                        streamer=streamer,
         | 
| 477 | 
             
                        max_new_tokens=max_new_tokens,
         | 
| 478 | 
             
                    )
         | 
| 479 | 
            -
             | 
| 480 | 
            -
                     | 
| 481 | 
            -
                    t = Thread(target=model.generate, kwargs=gen_kwargs)
         | 
| 482 | 
             
                    t.start()
         | 
| 483 |  | 
| 484 | 
            -
                    # ๊ฒฐ๊ณผ ์คํธ๋ฆฌ๋ฐ
         | 
| 485 | 
             
                    output = ""
         | 
| 486 | 
             
                    for new_text in streamer:
         | 
| 487 | 
             
                        output += new_text
         | 
| 488 | 
             
                        yield output
         | 
| 489 | 
            -
             | 
| 490 | 
             
                except Exception as e:
         | 
| 491 | 
             
                    logger.error(f"Error in run: {str(e)}")
         | 
| 492 | 
             
                    yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
         | 
| 493 |  | 
| 494 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 495 |  | 
| 496 | 
            -
             | 
| 497 | 
            -
            # ์์๋ค (ํ๊ธํ | 
| 498 | 
            -
             | 
| 499 | 
             
            examples = [
         | 
| 500 | 
            -
             | 
| 501 | 
             
                [
         | 
| 502 | 
             
                    {
         | 
| 503 | 
             
                        "text": "๋ PDF ํ์ผ ๋ด์ฉ์ ๋น๊ตํ๋ผ.",
         | 
| @@ -505,7 +471,7 @@ examples = [ | |
| 505 | 
             
                        "files": [
         | 
| 506 | 
             
                            "assets/additional-examples/before.pdf",
         | 
| 507 | 
             
                            "assets/additional-examples/after.pdf",
         | 
| 508 | 
            -
                        ], | 
| 509 | 
             
                    }
         | 
| 510 | 
             
                ],
         | 
| 511 | 
             
                [
         | 
| @@ -513,37 +479,37 @@ examples = [ | |
| 513 | 
             
                        "text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ",
         | 
| 514 | 
             
                        "files": ["assets/additional-examples/sample-csv.csv"],
         | 
| 515 | 
             
                    }
         | 
| 516 | 
            -
                ], | 
| 517 | 
             
                [
         | 
| 518 | 
             
                    {
         | 
| 519 | 
             
                        "text": "์ด ์์์ ๋ด์ฉ์ ์ค๋ช
ํ๋ผ",
         | 
| 520 | 
             
                        "files": ["assets/additional-examples/tmp.mp4"],
         | 
| 521 | 
             
                    }
         | 
| 522 | 
            -
                ], | 
| 523 | 
             
                [
         | 
| 524 | 
             
                    {
         | 
| 525 | 
             
                        "text": "ํ์ง ๋ด์ฉ์ ์ค๋ช
ํ๊ณ  ๊ธ์๋ฅผ ์ฝ์ด์ฃผ์ธ์.",
         | 
| 526 | 
             
                        "files": ["assets/additional-examples/maz.jpg"],
         | 
| 527 | 
             
                    }
         | 
| 528 | 
            -
                ], | 
| 529 | 
             
                [
         | 
| 530 | 
             
                    {
         | 
| 531 | 
             
                        "text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ  ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ  ๋ ์ฃผ์ํด์ผ ํ  ์ ์ด ์์๊น์?",
         | 
| 532 | 
             
                        "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
         | 
| 533 | 
             
                    }
         | 
| 534 | 
            -
                ], | 
| 535 | 
             
                [
         | 
| 536 | 
             
                    {
         | 
| 537 | 
             
                        "text": "์ด ์ ๋ถ์ ํ์ด์ฃผ์ธ์.",
         | 
| 538 | 
             
                        "files": ["assets/additional-examples/4.png"],
         | 
| 539 | 
             
                    }
         | 
| 540 | 
            -
                ], | 
| 541 | 
             
                [
         | 
| 542 | 
             
                    {
         | 
| 543 | 
             
                        "text": "์ด ํฐ์ผ์ ์ธ์  ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?",
         | 
| 544 | 
             
                        "files": ["assets/additional-examples/2.png"],
         | 
| 545 | 
             
                    }
         | 
| 546 | 
            -
                ], | 
| 547 | 
             
                [
         | 
| 548 | 
             
                    {
         | 
| 549 | 
             
                        "text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.",
         | 
| @@ -567,24 +533,19 @@ examples = [ | |
| 567 | 
             
                        "text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.",
         | 
| 568 | 
             
                        "files": ["assets/additional-examples/barchart.png"],
         | 
| 569 | 
             
                    }
         | 
| 570 | 
            -
                ], | 
| 571 | 
            -
             | 
| 572 | 
             
                [
         | 
| 573 | 
             
                    {
         | 
| 574 | 
             
                        "text": "์ด ์ธ๊ณ์์ ์ด๊ณ  ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.",
         | 
| 575 | 
             
                        "files": ["assets/sample-images/08.png"],
         | 
| 576 | 
             
                    }
         | 
| 577 | 
             
                ],
         | 
| 578 | 
            -
             | 
| 579 | 
            -
             | 
| 580 | 
             
                [
         | 
| 581 | 
             
                    {
         | 
| 582 | 
             
                        "text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.",
         | 
| 583 | 
             
                        "files": ["assets/additional-examples/3.png"],
         | 
| 584 | 
             
                    }
         | 
| 585 | 
             
                ],
         | 
| 586 | 
            -
             | 
| 587 | 
            -
             | 
| 588 | 
             
                [
         | 
| 589 | 
             
                    {
         | 
| 590 | 
             
                        "text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?",
         | 
| @@ -597,15 +558,11 @@ examples = [ | |
| 597 | 
             
                        "files": ["assets/sample-images/03.png"],
         | 
| 598 | 
             
                    }
         | 
| 599 | 
             
                ],
         | 
| 600 | 
            -
             | 
| 601 | 
             
            ]
         | 
| 602 |  | 
| 603 |  | 
| 604 | 
            -
             | 
| 605 | 
            -
             | 
| 606 | 
            -
             | 
| 607 | 
             
            ##############################################################################
         | 
| 608 | 
            -
            #  | 
| 609 | 
             
            ##############################################################################
         | 
| 610 | 
             
            css = """
         | 
| 611 | 
             
            body {
         | 
| @@ -662,18 +619,13 @@ button:hover, .btn:hover { | |
| 662 | 
             
            """
         | 
| 663 |  | 
| 664 | 
             
            title_html = """
         | 
| 665 | 
            -
            <h1 align="center" style="margin-bottom: 0.2em;"> ๐ค Vidraft- | 
| 666 | 
             
            <p align="center" style="font-size:1.1em; color:#555;">
         | 
| 667 | 
             
                Multimodal Chat Interface + Optional Web Search
         | 
| 668 | 
             
            </p>
         | 
| 669 | 
             
            """
         | 
| 670 |  | 
| 671 | 
            -
             | 
| 672 | 
            -
            # Build a Blocks layout that includes:
         | 
| 673 | 
            -
            #   - A left sidebar with "Web Search" controls
         | 
| 674 | 
            -
            #   - The main ChatInterface in the center or right
         | 
| 675 | 
            -
            ##############################################################################
         | 
| 676 | 
            -
            with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo:
         | 
| 677 | 
             
                gr.Markdown(title_html)
         | 
| 678 |  | 
| 679 | 
             
                with gr.Row():
         | 
| @@ -684,12 +636,12 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo: | |
| 684 | 
             
                            web_search_checkbox = gr.Checkbox(
         | 
| 685 | 
             
                                label="Web Search",
         | 
| 686 | 
             
                                value=False,
         | 
| 687 | 
            -
                                info="Check to enable a  | 
| 688 | 
             
                            )
         | 
| 689 | 
             
                        web_search_text = gr.Textbox(
         | 
| 690 | 
             
                            lines=1,
         | 
| 691 | 
            -
                            label="Web Search Query",
         | 
| 692 | 
            -
                            placeholder=" | 
| 693 | 
             
                        )
         | 
| 694 |  | 
| 695 | 
             
                        gr.Markdown("---")
         | 
| @@ -707,12 +659,12 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo: | |
| 707 | 
             
                            minimum=100,
         | 
| 708 | 
             
                            maximum=8000,
         | 
| 709 | 
             
                            step=50,
         | 
| 710 | 
            -
                            value=2000,
         | 
| 711 | 
             
                        )
         | 
| 712 |  | 
| 713 | 
            -
                        gr.Markdown("<br><br>") | 
| 714 |  | 
| 715 | 
            -
                    # Main ChatInterface | 
| 716 | 
             
                    with gr.Column(scale=7):
         | 
| 717 | 
             
                        chat = gr.ChatInterface(
         | 
| 718 | 
             
                            fn=run,
         | 
| @@ -734,7 +686,7 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo: | |
| 734 | 
             
                                web_search_text,
         | 
| 735 | 
             
                            ],
         | 
| 736 | 
             
                            stop_btn=False,
         | 
| 737 | 
            -
                            title="Vidraft- | 
| 738 | 
             
                            examples=examples,
         | 
| 739 | 
             
                            run_examples_on_click=False,
         | 
| 740 | 
             
                            cache_examples=False,
         | 
| @@ -745,12 +697,14 @@ with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo: | |
| 745 | 
             
                with gr.Row(elem_id="examples_row"):
         | 
| 746 | 
             
                    with gr.Column(scale=12, elem_id="examples_container"):
         | 
| 747 | 
             
                        gr.Markdown("### Example Inputs (click to load)")
         | 
| 748 | 
            -
                        # The fix: pass an empty list to avoid the "None" error, so we keep the code structure.
         | 
| 749 | 
             
                        gr.Examples(
         | 
| 750 | 
             
                            examples=examples,
         | 
| 751 | 
            -
                            inputs=[], | 
| 752 | 
             
                            cache_examples=False
         | 
| 753 | 
             
                        )
         | 
| 754 |  | 
| 755 | 
             
            if __name__ == "__main__":
         | 
|  | |
|  | |
| 756 | 
             
                demo.launch()
         | 
|  | 
|  | |
| 5 | 
             
            import tempfile
         | 
| 6 | 
             
            from collections.abc import Iterator
         | 
| 7 | 
             
            from threading import Thread
         | 
| 8 | 
            +
            import json
         | 
| 9 | 
            +
            import requests
         | 
| 10 | 
             
            import cv2
         | 
| 11 | 
             
            import gradio as gr
         | 
| 12 | 
             
            import spaces
         | 
|  | |
| 17 |  | 
| 18 | 
             
            # CSV/TXT ๋ถ์
         | 
| 19 | 
             
            import pandas as pd
         | 
|  | |
| 20 | 
             
            # PDF ํ
์คํธ ์ถ์ถ
         | 
| 21 | 
             
            import PyPDF2
         | 
| 22 |  | 
| 23 | 
             
            ##############################################################################
         | 
| 24 | 
            +
            # SERPHouse API key from environment variable
         | 
| 25 | 
            +
            ##############################################################################
         | 
| 26 | 
            +
            SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ##############################################################################
         | 
| 29 | 
            +
            # ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด)
         | 
| 30 | 
             
            ##############################################################################
         | 
| 31 | 
            +
            def extract_keywords(text: str, top_k: int = 5) -> str:
         | 
| 32 | 
            +
                """
         | 
| 33 | 
            +
                1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น
         | 
| 34 | 
            +
                2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ
         | 
| 35 | 
            +
                3) ์ต๋ top_k๊ฐ๋ง
         | 
| 36 | 
            +
                """
         | 
| 37 | 
            +
                text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
         | 
| 38 | 
            +
                tokens = text.split()
         | 
| 39 | 
            +
                key_tokens = tokens[:top_k]
         | 
| 40 | 
            +
                return " ".join(key_tokens)
         | 
| 41 |  | 
| 42 | 
             
            ##############################################################################
         | 
| 43 | 
            +
            # SERPHouse Live endpoint ํธ์ถ
         | 
| 44 | 
            +
            # - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ
         | 
| 45 | 
             
            ##############################################################################
         | 
| 46 | 
             
            def do_web_search(query: str) -> str:
         | 
| 47 | 
             
                """
         | 
| 48 | 
            +
                ์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ
         | 
| 49 | 
            +
                JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ
         | 
| 50 | 
             
                """
         | 
| 51 | 
             
                try:
         | 
| 52 | 
             
                    url = "https://api.serphouse.com/serp/live"
         | 
|  | |
| 56 | 
             
                        "lang": "en",
         | 
| 57 | 
             
                        "device": "desktop",
         | 
| 58 | 
             
                        "serp_type": "web",
         | 
| 59 | 
            +
                        "num_result": "20",
         | 
| 60 | 
             
                        "api_token": SERPHOUSE_API_KEY,
         | 
| 61 | 
             
                    }
         | 
| 62 | 
             
                    resp = requests.get(url, params=params, timeout=30)
         | 
| 63 | 
            +
                    resp.raise_for_status()
         | 
| 64 | 
             
                    data = resp.json()
         | 
| 65 |  | 
|  | |
| 66 | 
             
                    results = data.get("results", {})
         | 
| 67 | 
             
                    organic = results.get("results", {}).get("organic", [])
         | 
| 68 | 
             
                    if not organic:
         | 
| 69 | 
             
                        return "No web search results found."
         | 
| 70 |  | 
| 71 | 
             
                    summary_lines = []
         | 
| 72 | 
            +
                    for idx, item in enumerate(organic[:20], start=1):
         | 
| 73 | 
            +
                        item_json = json.dumps(item, ensure_ascii=False, indent=2)
         | 
| 74 | 
            +
                        summary_lines.append(f"Result {idx}:\n{item_json}\n")
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    return "\n".join(summary_lines)
         | 
|  | |
|  | |
|  | |
| 77 | 
             
                except Exception as e:
         | 
| 78 | 
             
                    logger.error(f"Web search failed: {e}")
         | 
| 79 | 
             
                    return f"Web search failed: {str(e)}"
         | 
| 80 |  | 
| 81 |  | 
| 82 | 
            +
            ##############################################################################
         | 
| 83 | 
            +
            # ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ
         | 
| 84 | 
            +
            ##############################################################################
         | 
| 85 | 
            +
            MAX_CONTENT_CHARS = 4000
         | 
| 86 | 
             
            model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
         | 
| 87 | 
            +
             | 
| 88 | 
             
            processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
         | 
| 89 | 
             
            model = Gemma3ForConditionalGeneration.from_pretrained(
         | 
| 90 | 
             
                model_id,
         | 
|  | |
| 92 | 
             
                torch_dtype=torch.bfloat16,
         | 
| 93 | 
             
                attn_implementation="eager"
         | 
| 94 | 
             
            )
         | 
|  | |
| 95 | 
             
            MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
         | 
| 96 |  | 
| 97 |  | 
| 98 | 
            +
            ##############################################################################
         | 
| 99 | 
             
            # CSV, TXT, PDF ๋ถ์ ํจ์
         | 
| 100 | 
            +
            ##############################################################################
         | 
| 101 | 
             
            def analyze_csv_file(path: str) -> str:
         | 
| 102 | 
             
                """
         | 
| 103 | 
             
                CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
         | 
| 104 | 
             
                """
         | 
| 105 | 
             
                try:
         | 
| 106 | 
             
                    df = pd.read_csv(path)
         | 
|  | |
| 107 | 
             
                    if df.shape[0] > 50 or df.shape[1] > 10:
         | 
| 108 | 
             
                        df = df.iloc[:50, :10]
         | 
|  | |
| 109 | 
             
                    df_str = df.to_string()
         | 
| 110 | 
             
                    if len(df_str) > MAX_CONTENT_CHARS:
         | 
| 111 | 
             
                        df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
         | 
|  | |
| 136 | 
             
                try:
         | 
| 137 | 
             
                    with open(pdf_path, "rb") as f:
         | 
| 138 | 
             
                        reader = PyPDF2.PdfReader(f)
         | 
|  | |
| 139 | 
             
                        max_pages = min(5, len(reader.pages))
         | 
| 140 | 
             
                        for page_num in range(max_pages):
         | 
| 141 | 
             
                            page = reader.pages[page_num]
         | 
| 142 | 
             
                            page_text = page.extract_text() or ""
         | 
| 143 | 
             
                            page_text = page_text.strip()
         | 
| 144 | 
             
                            if page_text:
         | 
|  | |
| 145 | 
             
                                if len(page_text) > MAX_CONTENT_CHARS // max_pages:
         | 
| 146 | 
             
                                    page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
         | 
| 147 | 
             
                                text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
         | 
|  | |
| 148 | 
             
                        if len(reader.pages) > max_pages:
         | 
| 149 | 
             
                            text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
         | 
| 150 | 
             
                except Exception as e:
         | 
|  | |
| 157 | 
             
                return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
         | 
| 158 |  | 
| 159 |  | 
| 160 | 
            +
            ##############################################################################
         | 
| 161 | 
             
            # ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
         | 
| 162 | 
            +
            ##############################################################################
         | 
| 163 | 
             
            def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
         | 
| 164 | 
             
                image_count = 0
         | 
| 165 | 
             
                video_count = 0
         | 
|  | |
| 188 |  | 
| 189 |  | 
| 190 | 
             
            def validate_media_constraints(message: dict, history: list[dict]) -> bool:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 191 | 
             
                media_files = []
         | 
| 192 | 
             
                for f in message["files"]:
         | 
| 193 | 
             
                    if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
         | 
|  | |
| 212 | 
             
                    gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
         | 
| 213 | 
             
                    return False
         | 
| 214 |  | 
|  | |
| 215 | 
             
                if "<image>" in message["text"]:
         | 
|  | |
| 216 | 
             
                    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
         | 
| 217 | 
             
                    image_tag_count = message["text"].count("<image>")
         | 
| 218 | 
             
                    if image_tag_count != len(image_files):
         | 
|  | |
| 222 | 
             
                return True
         | 
| 223 |  | 
| 224 |  | 
| 225 | 
            +
            ##############################################################################
         | 
| 226 | 
             
            # ๋น๋์ค ์ฒ๋ฆฌ
         | 
| 227 | 
            +
            ##############################################################################
         | 
| 228 | 
             
            def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
         | 
| 229 | 
             
                vidcap = cv2.VideoCapture(video_path)
         | 
| 230 | 
             
                fps = vidcap.get(cv2.CAP_PROP_FPS)
         | 
| 231 | 
             
                total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
         | 
| 232 | 
            +
                frame_interval = max(int(fps), int(total_frames / 10))
         | 
|  | |
|  | |
| 233 | 
             
                frames = []
         | 
| 234 |  | 
| 235 | 
             
                for i in range(0, total_frames, frame_interval):
         | 
|  | |
| 240 | 
             
                        pil_image = Image.fromarray(image)
         | 
| 241 | 
             
                        timestamp = round(i / fps, 2)
         | 
| 242 | 
             
                        frames.append((pil_image, timestamp))
         | 
|  | |
|  | |
| 243 | 
             
                        if len(frames) >= 5:
         | 
| 244 | 
             
                            break
         | 
| 245 |  | 
|  | |
| 260 | 
             
                return content
         | 
| 261 |  | 
| 262 |  | 
| 263 | 
            +
            ##############################################################################
         | 
| 264 | 
             
            # interleaved <image> ์ฒ๋ฆฌ
         | 
| 265 | 
            +
            ##############################################################################
         | 
| 266 | 
             
            def process_interleaved_images(message: dict) -> list[dict]:
         | 
| 267 | 
             
                parts = re.split(r"(<image>)", message["text"])
         | 
| 268 | 
             
                content = []
         | 
| 269 | 
             
                image_index = 0
         | 
| 270 |  | 
|  | |
| 271 | 
             
                image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
         | 
| 272 |  | 
| 273 | 
             
                for part in parts:
         | 
|  | |
| 277 | 
             
                    elif part.strip():
         | 
| 278 | 
             
                        content.append({"type": "text", "text": part.strip()})
         | 
| 279 | 
             
                    else:
         | 
|  | |
| 280 | 
             
                        if isinstance(part, str) and part != "<image>":
         | 
| 281 | 
             
                            content.append({"type": "text", "text": part})
         | 
| 282 | 
             
                return content
         | 
| 283 |  | 
| 284 |  | 
| 285 | 
            +
            ##############################################################################
         | 
| 286 | 
             
            # PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
         | 
| 287 | 
            +
            ##############################################################################
         | 
| 288 | 
             
            def is_image_file(file_path: str) -> bool:
         | 
|  | |
| 289 | 
             
                return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
         | 
| 290 |  | 
|  | |
| 291 | 
             
            def is_video_file(file_path: str) -> bool:
         | 
|  | |
| 292 | 
             
                return file_path.endswith(".mp4")
         | 
| 293 |  | 
|  | |
| 294 | 
             
            def is_document_file(file_path: str) -> bool:
         | 
| 295 | 
            +
                return (
         | 
| 296 | 
            +
                    file_path.lower().endswith(".pdf")
         | 
| 297 | 
            +
                    or file_path.lower().endswith(".csv")
         | 
| 298 | 
            +
                    or file_path.lower().endswith(".txt")
         | 
| 299 | 
            +
                )
         | 
| 300 |  | 
| 301 |  | 
| 302 | 
             
            def process_new_user_message(message: dict) -> list[dict]:
         | 
| 303 | 
             
                if not message["files"]:
         | 
| 304 | 
             
                    return [{"type": "text", "text": message["text"]}]
         | 
| 305 |  | 
|  | |
| 306 | 
             
                video_files = [f for f in message["files"] if is_video_file(f)]
         | 
| 307 | 
             
                image_files = [f for f in message["files"] if is_image_file(f)]
         | 
| 308 | 
             
                csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
         | 
| 309 | 
             
                txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
         | 
| 310 | 
             
                pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
         | 
| 311 |  | 
|  | |
| 312 | 
             
                content_list = [{"type": "text", "text": message["text"]}]
         | 
| 313 |  | 
|  | |
| 314 | 
             
                for csv_path in csv_files:
         | 
| 315 | 
             
                    csv_analysis = analyze_csv_file(csv_path)
         | 
| 316 | 
             
                    content_list.append({"type": "text", "text": csv_analysis})
         | 
| 317 |  | 
|  | |
| 318 | 
             
                for txt_path in txt_files:
         | 
| 319 | 
             
                    txt_analysis = analyze_txt_file(txt_path)
         | 
| 320 | 
             
                    content_list.append({"type": "text", "text": txt_analysis})
         | 
| 321 |  | 
|  | |
| 322 | 
             
                for pdf_path in pdf_files:
         | 
| 323 | 
             
                    pdf_markdown = pdf_to_markdown(pdf_path)
         | 
| 324 | 
             
                    content_list.append({"type": "text", "text": pdf_markdown})
         | 
| 325 |  | 
|  | |
| 326 | 
             
                if video_files:
         | 
| 327 | 
             
                    content_list += process_video(video_files[0])
         | 
| 328 | 
             
                    return content_list
         | 
| 329 |  | 
|  | |
| 330 | 
             
                if "<image>" in message["text"] and image_files:
         | 
|  | |
| 331 | 
             
                    interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
         | 
| 332 | 
            +
                    if content_list and content_list[0]["type"] == "text":
         | 
| 333 | 
            +
                        content_list = content_list[1:]
         | 
| 334 | 
            +
                    return interleaved_content + content_list
         | 
|  | |
| 335 | 
             
                else:
         | 
|  | |
| 336 | 
             
                    for img_path in image_files:
         | 
| 337 | 
             
                        content_list.append({"type": "image", "url": img_path})
         | 
| 338 |  | 
| 339 | 
             
                return content_list
         | 
| 340 |  | 
| 341 |  | 
| 342 | 
            +
            ##############################################################################
         | 
| 343 | 
             
            # history -> LLM ๋ฉ์์ง ๋ณํ
         | 
| 344 | 
            +
            ##############################################################################
         | 
| 345 | 
             
            def process_history(history: list[dict]) -> list[dict]:
         | 
| 346 | 
             
                messages = []
         | 
| 347 | 
             
                current_user_content: list[dict] = []
         | 
| 348 | 
             
                for item in history:
         | 
| 349 | 
             
                    if item["role"] == "assistant":
         | 
|  | |
| 350 | 
             
                        if current_user_content:
         | 
| 351 | 
             
                            messages.append({"role": "user", "content": current_user_content})
         | 
| 352 | 
             
                            current_user_content = []
         | 
|  | |
| 353 | 
             
                        messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
         | 
| 354 | 
             
                    else:
         | 
|  | |
| 355 | 
             
                        content = item["content"]
         | 
| 356 | 
             
                        if isinstance(content, str):
         | 
| 357 | 
             
                            current_user_content.append({"type": "text", "text": content})
         | 
|  | |
| 360 | 
             
                            if is_image_file(file_path):
         | 
| 361 | 
             
                                current_user_content.append({"type": "image", "url": file_path})
         | 
| 362 | 
             
                            else:
         | 
|  | |
| 363 | 
             
                                current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
         | 
| 364 | 
            +
             | 
|  | |
| 365 | 
             
                if current_user_content:
         | 
| 366 | 
             
                    messages.append({"role": "user", "content": current_user_content})
         | 
| 367 |  | 
| 368 | 
             
                return messages
         | 
| 369 |  | 
| 370 |  | 
| 371 | 
            +
            ##############################################################################
         | 
| 372 | 
            +
            # ๋ฉ์ธ ์ถ๋ก  ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg)
         | 
| 373 | 
            +
            ##############################################################################
         | 
| 374 | 
             
            @spaces.GPU(duration=120)
         | 
| 375 | 
             
            def run(
         | 
| 376 | 
             
                message: dict,
         | 
|  | |
| 380 | 
             
                use_web_search: bool = False,
         | 
| 381 | 
             
                web_search_query: str = "",
         | 
| 382 | 
             
            ) -> Iterator[str]:
         | 
| 383 | 
            +
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 384 | 
             
                if not validate_media_constraints(message, history):
         | 
| 385 | 
             
                    yield ""
         | 
| 386 | 
             
                    return
         | 
| 387 |  | 
| 388 | 
             
                try:
         | 
| 389 | 
            +
                    combined_system_msg = ""
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    if system_prompt.strip():
         | 
| 392 | 
            +
                        combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    if use_web_search:
         | 
| 395 | 
            +
                        user_text = message["text"]
         | 
| 396 | 
            +
                        ws_query = extract_keywords(user_text, top_k=5)
         | 
| 397 | 
            +
                        if ws_query.strip():
         | 
| 398 | 
            +
                            logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
         | 
| 399 | 
            +
                            ws_result = do_web_search(ws_query)
         | 
| 400 | 
            +
                            combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n"
         | 
| 401 | 
            +
                        else:
         | 
| 402 | 
            +
                            combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
         | 
| 403 |  | 
| 404 | 
             
                    messages = []
         | 
| 405 | 
            +
                    if combined_system_msg.strip():
         | 
| 406 | 
            +
                        messages.append({
         | 
| 407 | 
            +
                            "role": "system",
         | 
| 408 | 
            +
                            "content": [{"type": "text", "text": combined_system_msg.strip()}],
         | 
| 409 | 
            +
                        })
         | 
| 410 | 
            +
             | 
| 411 | 
             
                    messages.extend(process_history(history))
         | 
| 412 | 
            +
             | 
|  | |
| 413 | 
             
                    user_content = process_new_user_message(message)
         | 
|  | |
|  | |
| 414 | 
             
                    for item in user_content:
         | 
| 415 | 
             
                        if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
         | 
| 416 | 
             
                            item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
         | 
|  | |
| 417 | 
             
                    messages.append({"role": "user", "content": user_content})
         | 
| 418 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 419 | 
             
                    inputs = processor.apply_chat_template(
         | 
| 420 | 
             
                        messages,
         | 
| 421 | 
             
                        add_generation_prompt=True,
         | 
|  | |
| 424 | 
             
                        return_tensors="pt",
         | 
| 425 | 
             
                    ).to(device=model.device, dtype=torch.bfloat16)
         | 
| 426 |  | 
|  | |
| 427 | 
             
                    streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
         | 
| 428 | 
             
                    gen_kwargs = dict(
         | 
| 429 | 
             
                        inputs,
         | 
| 430 | 
             
                        streamer=streamer,
         | 
| 431 | 
             
                        max_new_tokens=max_new_tokens,
         | 
| 432 | 
             
                    )
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
         | 
|  | |
| 435 | 
             
                    t.start()
         | 
| 436 |  | 
|  | |
| 437 | 
             
                    output = ""
         | 
| 438 | 
             
                    for new_text in streamer:
         | 
| 439 | 
             
                        output += new_text
         | 
| 440 | 
             
                        yield output
         | 
| 441 | 
            +
             | 
| 442 | 
             
                except Exception as e:
         | 
| 443 | 
             
                    logger.error(f"Error in run: {str(e)}")
         | 
| 444 | 
             
                    yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
         | 
| 445 |  | 
| 446 |  | 
| 447 | 
            +
            ##############################################################################
         | 
| 448 | 
            +
            # [์ถ๊ฐ] ๋ณ๋ ํจ์์์ model.generate(...)๋ฅผ ํธ์ถ, OOM ์บ์น
         | 
| 449 | 
            +
            ##############################################################################
         | 
| 450 | 
            +
            def _model_gen_with_oom_catch(**kwargs):
         | 
| 451 | 
            +
                """
         | 
| 452 | 
            +
                ๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด
         | 
| 453 | 
            +
                """
         | 
| 454 | 
            +
                try:
         | 
| 455 | 
            +
                    model.generate(**kwargs)
         | 
| 456 | 
            +
                except torch.cuda.OutOfMemoryError:
         | 
| 457 | 
            +
                    raise RuntimeError(
         | 
| 458 | 
            +
                        "[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. "
         | 
| 459 | 
            +
                        "Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์."
         | 
| 460 | 
            +
                    )
         | 
| 461 | 
            +
             | 
| 462 |  | 
| 463 | 
            +
            ##############################################################################
         | 
| 464 | 
            +
            # ์์๋ค (ํ๊ธํ)
         | 
| 465 | 
            +
            ##############################################################################
         | 
| 466 | 
             
            examples = [
         | 
|  | |
| 467 | 
             
                [
         | 
| 468 | 
             
                    {
         | 
| 469 | 
             
                        "text": "๋ PDF ํ์ผ ๋ด์ฉ์ ๋น๊ตํ๋ผ.",
         | 
|  | |
| 471 | 
             
                        "files": [
         | 
| 472 | 
             
                            "assets/additional-examples/before.pdf",
         | 
| 473 | 
             
                            "assets/additional-examples/after.pdf",
         | 
| 474 | 
            +
                        ],
         | 
| 475 | 
             
                    }
         | 
| 476 | 
             
                ],
         | 
| 477 | 
             
                [
         | 
|  | |
| 479 | 
             
                        "text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ",
         | 
| 480 | 
             
                        "files": ["assets/additional-examples/sample-csv.csv"],
         | 
| 481 | 
             
                    }
         | 
| 482 | 
            +
                ],
         | 
| 483 | 
             
                [
         | 
| 484 | 
             
                    {
         | 
| 485 | 
             
                        "text": "์ด ์์์ ๋ด์ฉ์ ์ค๋ช
ํ๋ผ",
         | 
| 486 | 
             
                        "files": ["assets/additional-examples/tmp.mp4"],
         | 
| 487 | 
             
                    }
         | 
| 488 | 
            +
                ],
         | 
| 489 | 
             
                [
         | 
| 490 | 
             
                    {
         | 
| 491 | 
             
                        "text": "ํ์ง ๋ด์ฉ์ ์ค๋ช
ํ๊ณ  ๊ธ์๋ฅผ ์ฝ์ด์ฃผ์ธ์.",
         | 
| 492 | 
             
                        "files": ["assets/additional-examples/maz.jpg"],
         | 
| 493 | 
             
                    }
         | 
| 494 | 
            +
                ],
         | 
| 495 | 
             
                [
         | 
| 496 | 
             
                    {
         | 
| 497 | 
             
                        "text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ  ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ  ๋ ์ฃผ์ํด์ผ ํ  ์ ์ด ์์๊น์?",
         | 
| 498 | 
             
                        "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
         | 
| 499 | 
             
                    }
         | 
| 500 | 
            +
                ],
         | 
| 501 | 
             
                [
         | 
| 502 | 
             
                    {
         | 
| 503 | 
             
                        "text": "์ด ์ ๋ถ์ ํ์ด์ฃผ์ธ์.",
         | 
| 504 | 
             
                        "files": ["assets/additional-examples/4.png"],
         | 
| 505 | 
             
                    }
         | 
| 506 | 
            +
                ],
         | 
| 507 | 
             
                [
         | 
| 508 | 
             
                    {
         | 
| 509 | 
             
                        "text": "์ด ํฐ์ผ์ ์ธ์  ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?",
         | 
| 510 | 
             
                        "files": ["assets/additional-examples/2.png"],
         | 
| 511 | 
             
                    }
         | 
| 512 | 
            +
                ],
         | 
| 513 | 
             
                [
         | 
| 514 | 
             
                    {
         | 
| 515 | 
             
                        "text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.",
         | 
|  | |
| 533 | 
             
                        "text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.",
         | 
| 534 | 
             
                        "files": ["assets/additional-examples/barchart.png"],
         | 
| 535 | 
             
                    }
         | 
| 536 | 
            +
                ],
         | 
|  | |
| 537 | 
             
                [
         | 
| 538 | 
             
                    {
         | 
| 539 | 
             
                        "text": "์ด ์ธ๊ณ์์ ์ด๊ณ  ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.",
         | 
| 540 | 
             
                        "files": ["assets/sample-images/08.png"],
         | 
| 541 | 
             
                    }
         | 
| 542 | 
             
                ],
         | 
|  | |
|  | |
| 543 | 
             
                [
         | 
| 544 | 
             
                    {
         | 
| 545 | 
             
                        "text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.",
         | 
| 546 | 
             
                        "files": ["assets/additional-examples/3.png"],
         | 
| 547 | 
             
                    }
         | 
| 548 | 
             
                ],
         | 
|  | |
|  | |
| 549 | 
             
                [
         | 
| 550 | 
             
                    {
         | 
| 551 | 
             
                        "text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?",
         | 
|  | |
| 558 | 
             
                        "files": ["assets/sample-images/03.png"],
         | 
| 559 | 
             
                    }
         | 
| 560 | 
             
                ],
         | 
|  | |
| 561 | 
             
            ]
         | 
| 562 |  | 
| 563 |  | 
|  | |
|  | |
|  | |
| 564 | 
             
            ##############################################################################
         | 
| 565 | 
            +
            # Gradio UI (Blocks) ๊ตฌ์ฑ
         | 
| 566 | 
             
            ##############################################################################
         | 
| 567 | 
             
            css = """
         | 
| 568 | 
             
            body {
         | 
|  | |
| 619 | 
             
            """
         | 
| 620 |  | 
| 621 | 
             
            title_html = """
         | 
| 622 | 
            +
            <h1 align="center" style="margin-bottom: 0.2em;"> ๐ค Vidraft-G3-27B : Multimodal + VLM + Deep Research </h1>
         | 
| 623 | 
             
            <p align="center" style="font-size:1.1em; color:#555;">
         | 
| 624 | 
             
                Multimodal Chat Interface + Optional Web Search
         | 
| 625 | 
             
            </p>
         | 
| 626 | 
             
            """
         | 
| 627 |  | 
| 628 | 
            +
            with gr.Blocks(css=css, title="Vidraft-G3-27B") as demo:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 629 | 
             
                gr.Markdown(title_html)
         | 
| 630 |  | 
| 631 | 
             
                with gr.Row():
         | 
|  | |
| 636 | 
             
                            web_search_checkbox = gr.Checkbox(
         | 
| 637 | 
             
                                label="Web Search",
         | 
| 638 | 
             
                                value=False,
         | 
| 639 | 
            +
                                info="Check to enable a Deep Research(auto keywords) before the chat reply"
         | 
| 640 | 
             
                            )
         | 
| 641 | 
             
                        web_search_text = gr.Textbox(
         | 
| 642 | 
             
                            lines=1,
         | 
| 643 | 
            +
                            label="(Unused) Web Search Query",
         | 
| 644 | 
            +
                            placeholder="No direct input needed"
         | 
| 645 | 
             
                        )
         | 
| 646 |  | 
| 647 | 
             
                        gr.Markdown("---")
         | 
|  | |
| 659 | 
             
                            minimum=100,
         | 
| 660 | 
             
                            maximum=8000,
         | 
| 661 | 
             
                            step=50,
         | 
| 662 | 
            +
                            value=2000,  # GPU ๋ฉ๋ชจ๋ฆฌ ์ ์ฝ ์ํด ๊ธฐ๋ณธ๊ฐ ์ฝ๊ฐ ์ถ์
         | 
| 663 | 
             
                        )
         | 
| 664 |  | 
| 665 | 
            +
                        gr.Markdown("<br><br>")
         | 
| 666 |  | 
| 667 | 
            +
                    # Main ChatInterface
         | 
| 668 | 
             
                    with gr.Column(scale=7):
         | 
| 669 | 
             
                        chat = gr.ChatInterface(
         | 
| 670 | 
             
                            fn=run,
         | 
|  | |
| 686 | 
             
                                web_search_text,
         | 
| 687 | 
             
                            ],
         | 
| 688 | 
             
                            stop_btn=False,
         | 
| 689 | 
            +
                            title="Vidraft-G3-27B",
         | 
| 690 | 
             
                            examples=examples,
         | 
| 691 | 
             
                            run_examples_on_click=False,
         | 
| 692 | 
             
                            cache_examples=False,
         | 
|  | |
| 697 | 
             
                with gr.Row(elem_id="examples_row"):
         | 
| 698 | 
             
                    with gr.Column(scale=12, elem_id="examples_container"):
         | 
| 699 | 
             
                        gr.Markdown("### Example Inputs (click to load)")
         | 
|  | |
| 700 | 
             
                        gr.Examples(
         | 
| 701 | 
             
                            examples=examples,
         | 
| 702 | 
            +
                            inputs=[],
         | 
| 703 | 
             
                            cache_examples=False
         | 
| 704 | 
             
                        )
         | 
| 705 |  | 
| 706 | 
             
            if __name__ == "__main__":
         | 
| 707 | 
            +
                # share=True ์ HF Spaces์์ ๊ฒฝ๊ณ  ๋ฐ์ - ๋ก์ปฌ์์๋ง ๋์
         | 
| 708 | 
            +
                # demo.launch(share=True)
         | 
| 709 | 
             
                demo.launch()
         | 
| 710 | 
            +
             | 
 
			
