Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
import re | |
import tempfile | |
import gc # garbage collector ์ถ๊ฐ | |
from collections.abc import Iterator | |
from threading import Thread | |
import json | |
import requests | |
import cv2 | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
# CSV/TXT ๋ถ์ | |
import pandas as pd | |
# PDF ํ ์คํธ ์ถ์ถ | |
import PyPDF2 | |
############################################################################## | |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ ์ถ๊ฐ | |
############################################################################## | |
def clear_cuda_cache(): | |
"""CUDA ์บ์๋ฅผ ๋ช ์์ ์ผ๋ก ๋น์๋๋ค.""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
############################################################################## | |
# SERPHouse API key from environment variable | |
############################################################################## | |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
############################################################################## | |
# ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด) | |
############################################################################## | |
def extract_keywords(text: str, top_k: int = 5) -> str: | |
""" | |
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น | |
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ | |
3) ์ต๋ top_k๊ฐ๋ง | |
""" | |
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) | |
tokens = text.split() | |
key_tokens = tokens[:top_k] | |
return " ".join(key_tokens) | |
############################################################################## | |
# SerpHouse Live endpoint ํธ์ถ | |
# - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ | |
############################################################################## | |
def do_web_search(query: str) -> str: | |
""" | |
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ | |
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ | |
""" | |
try: | |
url = "https://api.serphouse.com/serp/live" | |
# ๊ธฐ๋ณธ GET ๋ฐฉ์์ผ๋ก ํ๋ผ๋ฏธํฐ ๊ฐ์ํํ๊ณ ๊ฒฐ๊ณผ ์๋ฅผ 20๊ฐ๋ก ์ ํ | |
params = { | |
"q": query, | |
"domain": "google.com", | |
"serp_type": "web", # ๊ธฐ๋ณธ ์น ๊ฒ์ | |
"device": "desktop", | |
"lang": "en", | |
"num": "20" # ์ต๋ 20๊ฐ ๊ฒฐ๊ณผ๋ง ์์ฒญ | |
} | |
headers = { | |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}" | |
} | |
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}") | |
logger.info(f"์์ฒญ URL: {url} - ํ๋ผ๋ฏธํฐ: {params}") | |
# GET ์์ฒญ ์ํ | |
response = requests.get(url, headers=headers, params=params, timeout=60) | |
response.raise_for_status() | |
logger.info(f"SerpHouse API ์๋ต ์ํ ์ฝ๋: {response.status_code}") | |
data = response.json() | |
# ๋ค์ํ ์๋ต ๊ตฌ์กฐ ์ฒ๋ฆฌ | |
results = data.get("results", {}) | |
organic = None | |
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 1 | |
if isinstance(results, dict) and "organic" in results: | |
organic = results["organic"] | |
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 2 (์ค์ฒฉ๋ results) | |
elif isinstance(results, dict) and "results" in results: | |
if isinstance(results["results"], dict) and "organic" in results["results"]: | |
organic = results["results"]["organic"] | |
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 3 (์ต์์ organic) | |
elif "organic" in data: | |
organic = data["organic"] | |
if not organic: | |
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.") | |
logger.debug(f"์๋ต ๊ตฌ์กฐ: {list(data.keys())}") | |
if isinstance(results, dict): | |
logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}") | |
return "No web search results found or unexpected API response structure." | |
# ๊ฒฐ๊ณผ ์ ์ ํ ๋ฐ ์ปจํ ์คํธ ๊ธธ์ด ์ต์ ํ | |
max_results = min(20, len(organic)) | |
limited_organic = organic[:max_results] | |
# ๊ฒฐ๊ณผ ํ์ ๊ฐ์ - ๋งํฌ๋ค์ด ํ์์ผ๋ก ์ถ๋ ฅํ์ฌ ๊ฐ๋ ์ฑ ํฅ์ | |
summary_lines = [] | |
for idx, item in enumerate(limited_organic, start=1): | |
title = item.get("title", "No title") | |
link = item.get("link", "#") | |
snippet = item.get("snippet", "No description") | |
displayed_link = item.get("displayed_link", link) | |
# ๋งํฌ๋ค์ด ํ์ (๋งํฌ ํด๋ฆญ ๊ฐ๋ฅ) | |
summary_lines.append( | |
f"### Result {idx}: {title}\n\n" | |
f"{snippet}\n\n" | |
f"**Source**: [{displayed_link}]({link})\n\n" | |
f"---\n" | |
) | |
# ๋ชจ๋ธ์๊ฒ ๋ช ํํ ์ง์นจ ์ถ๊ฐ | |
instructions = """ | |
# Web Search Results | |
Below are the search results. Please refer to the title, snippet, and source link of each result when answering: | |
1. Cite the sources explicitly in your answer (e.g., "According to [Source Title](link)..."). | |
2. Incorporate information from multiple sources. | |
""" | |
search_results = instructions + "\n".join(summary_lines) | |
logger.info(f"Processed {len(limited_organic)} search results") | |
return search_results | |
except Exception as e: | |
logger.error(f"Web search failed: {e}") | |
return f"Web search failed: {str(e)}" | |
############################################################################## | |
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ | |
############################################################################## | |
MAX_CONTENT_CHARS = 4000 | |
MAX_INPUT_LENGTH = 4096 # ์ต๋ ์ ๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ | |
model_id = os.getenv("MODEL_ID", "mlabonne/gemma-3-27b-it-abliterated") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="eager" # ๊ฐ๋ฅํ๋ค๋ฉด "flash_attention_2"๋ก ๋ณ๊ฒฝ | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
############################################################################## | |
# CSV, TXT, PDF ๋ถ์ ํจ์ | |
############################################################################## | |
def analyze_csv_file(path: str) -> str: | |
""" | |
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์. | |
""" | |
try: | |
df = pd.read_csv(path) | |
if df.shape[0] > 50 or df.shape[1] > 10: | |
df = df.iloc[:50, :10] | |
df_str = df.to_string() | |
if len(df_str) > MAX_CONTENT_CHARS: | |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" | |
except Exception as e: | |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" | |
def analyze_txt_file(path: str) -> str: | |
""" | |
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์. | |
""" | |
try: | |
with open(path, "r", encoding="utf-8") as f: | |
text = f.read() | |
if len(text) > MAX_CONTENT_CHARS: | |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" | |
except Exception as e: | |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" | |
def pdf_to_markdown(pdf_path: str) -> str: | |
""" | |
PDF ํ ์คํธ๋ฅผ Markdown์ผ๋ก ๋ณํ. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ ์คํธ ์ถ์ถ. | |
""" | |
text_chunks = [] | |
try: | |
with open(pdf_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
max_pages = min(5, len(reader.pages)) | |
for page_num in range(max_pages): | |
page = reader.pages[page_num] | |
page_text = page.extract_text() or "" | |
page_text = page_text.strip() | |
if page_text: | |
if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" | |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") | |
if len(reader.pages) > max_pages: | |
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") | |
except Exception as e: | |
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" | |
full_text = "\n".join(text_chunks) | |
if len(full_text) > MAX_CONTENT_CHARS: | |
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
############################################################################## | |
# ์ด๋ฏธ์ง/๋น๋์ค ์ ๋ก๋ ์ ํ ๊ฒ์ฌ | |
############################################################################## | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if isinstance(item["content"], list) and len(item["content"]) > 0: | |
file_path = item["content"][0] | |
if isinstance(file_path, str): | |
if file_path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
media_files = [] | |
for f in message["files"]: | |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): | |
media_files.append(f) | |
new_image_count, new_video_count = count_files_in_new_message(media_files) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("Only one video is supported.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("Mixing images and videos is not allowed.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("Using <image> tags with video files is not supported.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
return False | |
if "<image>" in message["text"]: | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_tag_count = message["text"].count("<image>") | |
if image_tag_count != len(image_files): | |
gr.Warning("The number of <image> tags in the text does not match the number of image files.") | |
return False | |
return True | |
############################################################################## | |
# ๋น๋์ค ์ฒ๋ฆฌ - ์์ ํ์ผ ์ถ์ ์ฝ๋ ์ถ๊ฐ | |
############################################################################## | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(int(fps), int(total_frames / 10)) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ค์ด๊ธฐ ์ถ๊ฐ | |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
if len(frames) >= 5: | |
break | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> tuple[list[dict], list[str]]: | |
content = [] | |
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ ์ํ ๋ฆฌ์คํธ | |
frames = downsample_video(video_path) | |
for frame in frames: | |
pil_image, timestamp = frame | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
temp_files.append(temp_file.name) # ์ถ์ ์ ์ํด ๊ฒฝ๋ก ์ ์ฅ | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
return content, temp_files | |
############################################################################## | |
# interleaved <image> ์ฒ๋ฆฌ | |
############################################################################## | |
def process_interleaved_images(message: dict) -> list[dict]: | |
parts = re.split(r"(<image>)", message["text"]) | |
content = [] | |
image_index = 0 | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
for part in parts: | |
if part == "<image>" and image_index < len(image_files): | |
content.append({"type": "image", "url": image_files[image_index]}) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
else: | |
if isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
return content | |
############################################################################## | |
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค | |
############################################################################## | |
def is_image_file(file_path: str) -> bool: | |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
def is_video_file(file_path: str) -> bool: | |
return file_path.endswith(".mp4") | |
def is_document_file(file_path: str) -> bool: | |
return ( | |
file_path.lower().endswith(".pdf") | |
or file_path.lower().endswith(".csv") | |
or file_path.lower().endswith(".txt") | |
) | |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: | |
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ ๋ฆฌ์คํธ | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}], temp_files | |
video_files = [f for f in message["files"] if is_video_file(f)] | |
image_files = [f for f in message["files"] if is_image_file(f)] | |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
content_list = [{"type": "text", "text": message["text"]}] | |
for csv_path in csv_files: | |
csv_analysis = analyze_csv_file(csv_path) | |
content_list.append({"type": "text", "text": csv_analysis}) | |
for txt_path in txt_files: | |
txt_analysis = analyze_txt_file(txt_path) | |
content_list.append({"type": "text", "text": txt_analysis}) | |
for pdf_path in pdf_files: | |
pdf_markdown = pdf_to_markdown(pdf_path) | |
content_list.append({"type": "text", "text": pdf_markdown}) | |
if video_files: | |
video_content, video_temp_files = process_video(video_files[0]) | |
content_list += video_content | |
temp_files.extend(video_temp_files) | |
return content_list, temp_files | |
if "<image>" in message["text"] and image_files: | |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
if content_list and content_list[0]["type"] == "text": | |
content_list = content_list[1:] | |
return interleaved_content + content_list, temp_files | |
else: | |
for img_path in image_files: | |
content_list.append({"type": "image", "url": img_path}) | |
return content_list, temp_files | |
############################################################################## | |
# history -> LLM ๋ฉ์์ง ๋ณํ | |
############################################################################## | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
elif isinstance(content, list) and len(content) > 0: | |
file_path = content[0] | |
if is_image_file(file_path): | |
current_user_content.append({"type": "image", "url": file_path}) | |
else: | |
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
return messages | |
############################################################################## | |
# ๋ชจ๋ธ ์์ฑ ํจ์์์ OOM ์บ์น | |
############################################################################## | |
def _model_gen_with_oom_catch(**kwargs): | |
""" | |
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด | |
""" | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError: | |
raise RuntimeError( | |
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. " | |
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์." | |
) | |
finally: | |
# ์์ฑ ์๋ฃ ํ ํ๋ฒ ๋ ์บ์ ๋น์ฐ๊ธฐ | |
clear_cuda_cache() | |
############################################################################## | |
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg) | |
############################################################################## | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 512, | |
use_web_search: bool = False, | |
web_search_query: str = "", | |
) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ | |
try: | |
combined_system_msg = "" | |
# ๋ด๋ถ์ ์ผ๋ก๋ง ์ฌ์ฉ (UI์์๋ ๋ณด์ด์ง ์์) | |
if system_prompt.strip(): | |
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" | |
if use_web_search: | |
user_text = message["text"] | |
ws_query = extract_keywords(user_text, top_k=5) | |
if ws_query.strip(): | |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") | |
ws_result = do_web_search(ws_query) | |
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n" | |
# >>> ์ถ๊ฐ๋ ์๋ด ๋ฌธ๊ตฌ (๊ฒ์ ๊ฒฐ๊ณผ์ link ๋ฑ ์ถ์ฒ๋ฅผ ํ์ฉ) | |
combined_system_msg += "[Note: Use the above search results and their links as sources when answering.]\n\n" | |
combined_system_msg += """ | |
[Important Instructions] | |
1. Cite the sources found in the search results using markdown links, e.g., "[Source Title](link)". | |
2. Combine information from multiple sources in your answer. | |
3. At the end of your answer, add a "References:" section listing the key source links. | |
""" | |
else: | |
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" | |
messages = [] | |
if combined_system_msg.strip(): | |
messages.append({ | |
"role": "system", | |
"content": [{"type": "text", "text": combined_system_msg.strip()}], | |
}) | |
messages.extend(process_history(history)) | |
user_content, user_temp_files = process_new_user_message(message) | |
temp_files.extend(user_temp_files) # ์์ ํ์ผ ์ถ์ | |
for item in user_content: | |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
messages.append({"role": "user", "content": user_content}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
# ์ ๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ | |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: | |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] | |
if 'attention_mask' in inputs: | |
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = dict( | |
inputs=inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
t.start() | |
output = "" | |
for new_text in streamer: | |
output += new_text | |
yield output | |
except Exception as e: | |
logger.error(f"Error in run: {str(e)}") | |
yield f"Sorry, an error occurred: {str(e)}" | |
finally: | |
# ์์ ํ์ผ ์ญ์ | |
for temp_file in temp_files: | |
try: | |
if os.path.exists(temp_file): | |
os.unlink(temp_file) | |
logger.info(f"Deleted temp file: {temp_file}") | |
except Exception as e: | |
logger.warning(f"Failed to delete temp file {temp_file}: {e}") | |
# ๋ช ์์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
try: | |
del inputs, streamer | |
except: | |
pass | |
clear_cuda_cache() | |
############################################################################## | |
# ์์๋ค (๋ชจ๋ ์์ด๋ก) | |
############################################################################## | |
examples = [ | |
[ | |
{ | |
"text": "Compare the contents of the two PDF files.", | |
"files": [ | |
"assets/additional-examples/before.pdf", | |
"assets/additional-examples/after.pdf", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Summarize and analyze the contents of the CSV file.", | |
"files": ["assets/additional-examples/sample-csv.csv"], | |
} | |
], | |
[ | |
{ | |
"text": "Assume the role of a friendly and understanding girlfriend. Describe this video.", | |
"files": ["assets/additional-examples/tmp.mp4"], | |
} | |
], | |
[ | |
{ | |
"text": "Describe the cover and read the text on it.", | |
"files": ["assets/additional-examples/maz.jpg"], | |
} | |
], | |
[ | |
{ | |
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?", | |
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Solve this integral.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
[ | |
{ | |
"text": "When was this ticket issued, and what is its price?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Based on the sequence of these images, create a short story.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.", | |
"files": ["assets/additional-examples/barchart.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Read the text in the image and write it out in Markdown format.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "What does this sign say?", | |
"files": ["assets/sample-images/02.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Compare the two images and describe their similarities and differences.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
] | |
############################################################################## | |
# Gradio UI (Blocks) ๊ตฌ์ฑ (์ข์ธก ์ฌ์ด๋ ๋ฉ๋ด ์์ด ์ ์ฒดํ๋ฉด ์ฑํ ) | |
############################################################################## | |
css = """ | |
/* 1) UI๋ฅผ ์ฒ์๋ถํฐ ๊ฐ์ฅ ๋๊ฒ (width 100%) ๊ณ ์ ํ์ฌ ํ์ */ | |
.gradio-container { | |
background: rgba(255, 255, 255, 0.7); /* ๋ฐฐ๊ฒฝ ํฌ๋ช ๋ ์ฆ๊ฐ */ | |
padding: 30px 40px; | |
margin: 20px auto; /* ์์๋ ์ฌ๋ฐฑ๋ง ์ ์ง */ | |
width: 100% !important; | |
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */ | |
} | |
.fillable { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
/* 2) ๋ฐฐ๊ฒฝ์ ์์ ํ ํฌ๋ช ํ๊ฒ ๋ณ๊ฒฝ */ | |
body { | |
background: transparent; /* ์์ ํฌ๋ช ๋ฐฐ๊ฒฝ */ | |
margin: 0; | |
padding: 0; | |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; | |
color: #333; | |
} | |
/* ๋ฒํผ ์์ ์์ ํ ์ ๊ฑฐํ๊ณ ํฌ๋ช ํ๊ฒ */ | |
button, .btn { | |
background: transparent !important; /* ์์ ์์ ํ ์ ๊ฑฐ */ | |
border: 1px solid #ddd; /* ๊ฒฝ๊ณ์ ๋ง ์ด์ง ์ถ๊ฐ */ | |
color: #333; | |
padding: 12px 24px; | |
text-transform: uppercase; | |
font-weight: bold; | |
letter-spacing: 1px; | |
cursor: pointer; | |
} | |
button:hover, .btn:hover { | |
background: rgba(0, 0, 0, 0.05) !important; /* ํธ๋ฒ ์ ์์ฃผ ์ด์ง ์ด๋ก๊ฒ๋ง */ | |
} | |
/* examples ๊ด๋ จ ๋ชจ๋ ์์ ์ ๊ฑฐ */ | |
#examples_container, .examples-container { | |
margin: auto; | |
width: 90%; | |
background: transparent !important; | |
} | |
#examples_row, .examples-row { | |
justify-content: center; | |
background: transparent !important; | |
} | |
/* examples ๋ฒํผ ๋ด๋ถ์ ๋ชจ๋ ์์ ์ ๊ฑฐ */ | |
.gr-samples-table button, | |
.gr-samples-table .gr-button, | |
.gr-samples-table .gr-sample-btn, | |
.gr-examples button, | |
.gr-examples .gr-button, | |
.gr-examples .gr-sample-btn, | |
.examples button, | |
.examples .gr-button, | |
.examples .gr-sample-btn { | |
background: transparent !important; | |
border: 1px solid #ddd; | |
color: #333; | |
} | |
/* examples ๋ฒํผ ํธ๋ฒ ์์๋ ์์ ์๊ฒ */ | |
.gr-samples-table button:hover, | |
.gr-samples-table .gr-button:hover, | |
.gr-samples-table .gr-sample-btn:hover, | |
.gr-examples button:hover, | |
.gr-examples .gr-button:hover, | |
.gr-examples .gr-sample-btn:hover, | |
.examples button:hover, | |
.examples .gr-button:hover, | |
.examples .gr-sample-btn:hover { | |
background: rgba(0, 0, 0, 0.05) !important; | |
} | |
/* ์ฑํ ์ธํฐํ์ด์ค ์์๋ค๋ ํฌ๋ช ํ๊ฒ */ | |
.chatbox, .chatbot, .message { | |
background: transparent !important; | |
} | |
/* ์ ๋ ฅ์ฐฝ ํฌ๋ช ๋ ์กฐ์ */ | |
.multimodal-textbox, textarea, input { | |
background: rgba(255, 255, 255, 0.5) !important; | |
} | |
/* ๋ชจ๋ ์ปจํ ์ด๋ ์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */ | |
.container, .wrap, .box, .panel, .gr-panel { | |
background: transparent !important; | |
} | |
/* ์์ ์น์ ์ ๋ชจ๋ ์์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */ | |
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell { | |
background: transparent !important; | |
} | |
""" | |
title_html = """ | |
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-R1984-27B </h1> | |
<p align="center" style="font-size:1.1em; color:#555;"> | |
โ Agentic AI Platform โ Reasoning & Uncensored โ Multimodal & VLM โ Deep-Research & RAG <br> | |
Operates on an NVIDIA A100 GPU as an independent local server, enhancing security and preventing information leakage.<br> | |
@Based by 'MS Gemma-3-27b' / @Powered by 'MOUSE-II'(VIDRAFT) | |
</p> | |
""" | |
with gr.Blocks(css=css, title="Gemma3-R1984-27B") as demo: | |
gr.Markdown(title_html) | |
# Display the web search option (while the system prompt and token slider remain hidden) | |
web_search_checkbox = gr.Checkbox( | |
label="Deep Research", | |
value=False | |
) | |
# Used internally but not visible to the user | |
system_prompt_box = gr.Textbox( | |
lines=3, | |
value="Please answer in English. You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering. You have the ability to read sources in other languages, but you must always answer in English. Even if the search results are in another language, answer in English.", | |
visible=False # hidden from view | |
) | |
max_tokens_slider = gr.Slider( | |
label="Max New Tokens", | |
minimum=100, | |
maximum=8000, | |
step=50, | |
value=1000, | |
visible=False # hidden from view | |
) | |
web_search_text = gr.Textbox( | |
lines=1, | |
label="(Unused) Web Search Query", | |
placeholder="No direct input needed", | |
visible=False # hidden from view | |
) | |
# Configure the chat interface | |
chat = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[ | |
".webp", ".png", ".jpg", ".jpeg", ".gif", | |
".mp4", ".csv", ".txt", ".pdf" | |
], | |
file_count="multiple", | |
autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
system_prompt_box, | |
max_tokens_slider, | |
web_search_checkbox, | |
web_search_text, | |
], | |
stop_btn=False, | |
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>', | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths=None, | |
delete_cache=(1800, 1800), | |
) | |
# Example section - since examples are already set in ChatInterface, this is for display only | |
with gr.Row(elem_id="examples_row"): | |
with gr.Column(scale=12, elem_id="examples_container"): | |
gr.Markdown("### Example Inputs (click to load)") | |
if __name__ == "__main__": | |
# Run locally | |
demo.launch() | |