Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
import re | |
import tempfile | |
import gc # garbage collector ์ถ๊ฐ | |
from collections.abc import Iterator | |
from threading import Thread | |
import json | |
import requests | |
import cv2 | |
import base64 | |
import logging | |
import time | |
from urllib.parse import quote # URL ์ธ์ฝ๋ฉ์ ์ํด ์ถ๊ฐ | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
# CSV/TXT/PDF ๋ถ์ | |
import pandas as pd | |
import PyPDF2 | |
# ============================================================================= | |
# (์ ๊ท) ์ด๋ฏธ์ง API ๊ด๋ จ ํจ์๋ค | |
# ============================================================================= | |
from gradio_client import Client | |
API_URL = "http://211.233.58.201:7896" | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
def test_api_connection() -> str: | |
"""API ์๋ฒ ์ฐ๊ฒฐ ํ ์คํธ""" | |
try: | |
client = Client(API_URL) | |
return "API ์ฐ๊ฒฐ ์ฑ๊ณต: ์ ์ ์๋ ์ค" | |
except Exception as e: | |
logging.error(f"API ์ฐ๊ฒฐ ํ ์คํธ ์คํจ: {e}") | |
return f"API ์ฐ๊ฒฐ ์คํจ: {e}" | |
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float): | |
"""์ด๋ฏธ์ง ์์ฑ ํจ์ (๋ฐํ ํ์์ ์ ์ฐํ๊ฒ ๋์)""" | |
if not prompt: | |
return None, "์ค๋ฅ: ํ๋กฌํํธ๊ฐ ํ์ํฉ๋๋ค." | |
try: | |
logging.info(f"ํ๋กฌํํธ๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง ์์ฑ API ํธ์ถ: {prompt}") | |
client = Client(API_URL) | |
result = client.predict( | |
prompt=prompt, | |
width=int(width), | |
height=int(height), | |
guidance=float(guidance), | |
inference_steps=int(inference_steps), | |
seed=int(seed), | |
do_img2img=False, | |
init_image=None, | |
image2image_strength=0.8, | |
resize_img=True, | |
api_name="/generate_image" | |
) | |
logging.info(f"์ด๋ฏธ์ง ์์ฑ ๊ฒฐ๊ณผ: {type(result)}, ๊ธธ์ด: {len(result) if isinstance(result, (list, tuple)) else '์ ์ ์์'}") | |
# ๊ฒฐ๊ณผ๊ฐ ํํ์ด๋ ๋ฆฌ์คํธ ํํ๋ก ๋ฐํ๋๋ ๊ฒฝ์ฐ ์ฒ๋ฆฌ | |
if isinstance(result, (list, tuple)) and len(result) > 0: | |
image_data = result[0] # ์ฒซ ๋ฒ์งธ ์์๊ฐ ์ด๋ฏธ์ง ๋ฐ์ดํฐ | |
seed_info = result[1] if len(result) > 1 else "์ ์ ์๋ ์๋" | |
return image_data, seed_info | |
else: | |
# ๋ค๋ฅธ ํํ๋ก ๋ฐํ๋ ๊ฒฝ์ฐ (๋จ์ผ ๊ฐ์ธ ๊ฒฝ์ฐ) | |
return result, "์ ์ ์๋ ์๋" | |
except Exception as e: | |
logging.error(f"์ด๋ฏธ์ง ์์ฑ ์คํจ: {str(e)}") | |
return None, f"์ค๋ฅ: {str(e)}" | |
# Base64 ํจ๋ฉ ์์ ํจ์ | |
def fix_base64_padding(data): | |
"""Base64 ๋ฌธ์์ด์ ํจ๋ฉ์ ์์ ํฉ๋๋ค.""" | |
if isinstance(data, bytes): | |
data = data.decode('utf-8') | |
# base64,๋ก ์์ํ๋ ๋ถ๋ถ ์ ๊ฑฐ | |
if "base64," in data: | |
data = data.split("base64,", 1)[1] | |
# ํจ๋ฉ ๋ฌธ์ ์ถ๊ฐ (4์ ๋ฐฐ์ ๊ธธ์ด๊ฐ ๋๋๋ก) | |
missing_padding = len(data) % 4 | |
if missing_padding: | |
data += '=' * (4 - missing_padding) | |
return data | |
# ============================================================================= | |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ | |
# ============================================================================= | |
def clear_cuda_cache(): | |
"""CUDA ์บ์๋ฅผ ๋ช ์์ ์ผ๋ก ๋น์๋๋ค.""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
# ============================================================================= | |
# SerpHouse ๊ด๋ จ ํจ์ | |
# ============================================================================= | |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
def extract_keywords(text: str, top_k: int = 5) -> str: | |
"""๋จ์ ํค์๋ ์ถ์ถ: ํ๊ธ, ์์ด, ์ซ์, ๊ณต๋ฐฑ๋ง ๋จ๊น""" | |
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) | |
tokens = text.split() | |
return " ".join(tokens[:top_k]) | |
def do_web_search(query: str) -> str: | |
"""SerpHouse LIVE API ํธ์ถํ์ฌ ๊ฒ์ ๊ฒฐ๊ณผ ๋งํฌ๋ค์ด ๋ฐํ""" | |
try: | |
url = "https://api.serphouse.com/serp/live" | |
params = { | |
"q": query, | |
"domain": "google.com", | |
"serp_type": "web", | |
"device": "desktop", | |
"lang": "en", | |
"num": "20" | |
} | |
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"} | |
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}") | |
response = requests.get(url, headers=headers, params=params, timeout=60) | |
response.raise_for_status() | |
data = response.json() | |
results = data.get("results", {}) | |
organic = None | |
if isinstance(results, dict) and "organic" in results: | |
organic = results["organic"] | |
elif isinstance(results, dict) and "results" in results: | |
if isinstance(results["results"], dict) and "organic" in results["results"]: | |
organic = results["results"]["organic"] | |
elif "organic" in data: | |
organic = data["organic"] | |
if not organic: | |
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.") | |
return "์น ๊ฒ์ ๊ฒฐ๊ณผ๊ฐ ์๊ฑฐ๋ API ์๋ต ๊ตฌ์กฐ๊ฐ ์์๊ณผ ๋ค๋ฆ ๋๋ค." | |
max_results = min(20, len(organic)) | |
limited_organic = organic[:max_results] | |
summary_lines = [] | |
for idx, item in enumerate(limited_organic, start=1): | |
title = item.get("title", "์ ๋ชฉ ์์") | |
link = item.get("link", "#") | |
snippet = item.get("snippet", "์ค๋ช ์์") | |
displayed_link = item.get("displayed_link", link) | |
summary_lines.append( | |
f"### ๊ฒฐ๊ณผ {idx}: {title}\n\n" | |
f"{snippet}\n\n" | |
f"**์ถ์ฒ**: [{displayed_link}]({link})\n\n" | |
f"---\n" | |
) | |
instructions = """ | |
# ์น ๊ฒ์ ๊ฒฐ๊ณผ | |
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์ ๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์: | |
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์. | |
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช ์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "[์ถ์ฒ ์ ๋ชฉ](๋งํฌ)"). | |
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์. | |
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข ํฉํ์ฌ ๋ต๋ณํ์ธ์. | |
5. ๋ง์ง๋ง์ "์ฐธ๊ณ ์๋ฃ:" ์น์ ์ ์ถ๊ฐํ๊ณ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์. | |
""" | |
return instructions + "\n".join(summary_lines) | |
except Exception as e: | |
logger.error(f"์น ๊ฒ์ ์คํจ: {e}") | |
return f"์น ๊ฒ์ ์คํจ: {str(e)}" | |
# ============================================================================= | |
# ๋ชจ๋ธ ๋ฐ ํ๋ก์ธ์ ๋ก๋ฉ | |
# ============================================================================= | |
MAX_CONTENT_CHARS = 2000 | |
MAX_INPUT_LENGTH = 2096 | |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="eager" | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
# ============================================================================= | |
# CSV, TXT, PDF ๋ถ์ ํจ์๋ค | |
# ============================================================================= | |
def analyze_csv_file(path: str) -> str: | |
try: | |
df = pd.read_csv(path) | |
if df.shape[0] > 50 or df.shape[1] > 10: | |
df = df.iloc[:50, :10] | |
df_str = df.to_string() | |
if len(df_str) > MAX_CONTENT_CHARS: | |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(์ผ๋ถ ์๋ต)..." | |
return f"**[CSV ํ์ผ: {os.path.basename(path)}]**\n\n{df_str}" | |
except Exception as e: | |
return f"CSV ํ์ผ ์ฝ๊ธฐ ์คํจ ({os.path.basename(path)}): {str(e)}" | |
def analyze_txt_file(path: str) -> str: | |
try: | |
with open(path, "r", encoding="utf-8") as f: | |
text = f.read() | |
if len(text) > MAX_CONTENT_CHARS: | |
text = text[:MAX_CONTENT_CHARS] + "\n...(์ผ๋ถ ์๋ต)..." | |
return f"**[TXT ํ์ผ: {os.path.basename(path)}]**\n\n{text}" | |
except Exception as e: | |
return f"TXT ํ์ผ ์ฝ๊ธฐ ์คํจ ({os.path.basename(path)}): {str(e)}" | |
def pdf_to_markdown(pdf_path: str) -> str: | |
text_chunks = [] | |
try: | |
with open(pdf_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
max_pages = min(5, len(reader.pages)) | |
for page_num in range(max_pages): | |
page_text = reader.pages[page_num].extract_text() or "" | |
page_text = page_text.strip() | |
if page_text: | |
if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(์ผ๋ถ ์๋ต)" | |
text_chunks.append(f"## ํ์ด์ง {page_num+1}\n\n{page_text}\n") | |
if len(reader.pages) > max_pages: | |
text_chunks.append(f"\n...(์ ์ฒด {len(reader.pages)}ํ์ด์ง ์ค {max_pages}ํ์ด์ง๋ง ํ์)...") | |
except Exception as e: | |
return f"PDF ํ์ผ ์ฝ๊ธฐ ์คํจ ({os.path.basename(pdf_path)}): {str(e)}" | |
full_text = "\n".join(text_chunks) | |
if len(full_text) > MAX_CONTENT_CHARS: | |
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(์ผ๋ถ ์๋ต)..." | |
return f"**[PDF ํ์ผ: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
# ============================================================================= | |
# ์ด๋ฏธ์ง/๋น๋์ค ํ์ผ ์ ํ ๊ฒ์ฌ | |
# ============================================================================= | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if isinstance(item["content"], list) and len(item["content"]) > 0: | |
file_path = item["content"][0] | |
if isinstance(file_path, str): | |
if file_path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")] | |
new_image_count, new_video_count = count_files_in_new_message(media_files) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("๋น๋์ค ํ์ผ์ ํ๋๋ง ์ง์๋ฉ๋๋ค.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("์ด๋ฏธ์ง์ ๋น๋์ค๋ฅผ ํผํฉํ๋ ๊ฒ์ ํ์ฉ๋์ง ์์ต๋๋ค.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("<image> ํ๊ทธ์ ๋น๋์ค ํ์ผ์ ํจ๊ป ์ฌ์ฉํ ์ ์์ต๋๋ค.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"์ต๋ {MAX_NUM_IMAGES}์ฅ์ ์ด๋ฏธ์ง๋ฅผ ์ ๋ก๋ํ ์ ์์ต๋๋ค.") | |
return False | |
if "<image>" in message["text"]: | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_tag_count = message["text"].count("<image>") | |
if image_tag_count != len(image_files): | |
gr.Warning("ํ ์คํธ์ ์๋ <image> ํ๊ทธ์ ๊ฐ์๊ฐ ์ด๋ฏธ์ง ํ์ผ ๊ฐ์์ ์ผ์นํ์ง ์์ต๋๋ค.") | |
return False | |
return True | |
# ============================================================================= | |
# ๋น๋์ค ์ฒ๋ฆฌ ํจ์ | |
# ============================================================================= | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(int(fps), int(total_frames / 10)) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
if len(frames) >= 5: | |
break | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> tuple[list[dict], list[str]]: | |
content = [] | |
temp_files = [] | |
frames = downsample_video(video_path) | |
for pil_image, timestamp in frames: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
temp_files.append(temp_file.name) | |
content.append({"type": "text", "text": f"ํ๋ ์ {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
return content, temp_files | |
# ============================================================================= | |
# interleaved <image> ์ฒ๋ฆฌ ํจ์ | |
# ============================================================================= | |
def process_interleaved_images(message: dict) -> list[dict]: | |
parts = re.split(r"(<image>)", message["text"]) | |
content = [] | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_index = 0 | |
for part in parts: | |
if part == "<image>" and image_index < len(image_files): | |
content.append({"type": "image", "url": image_files[image_index]}) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
else: | |
if isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
return content | |
# ============================================================================= | |
# ํ์ผ ์ฒ๋ฆฌ -> content ์์ฑ | |
# ============================================================================= | |
def is_image_file(file_path: str) -> bool: | |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
def is_video_file(file_path: str) -> bool: | |
return file_path.endswith(".mp4") | |
def is_document_file(file_path: str) -> bool: | |
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt") | |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: | |
temp_files = [] | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}], temp_files | |
video_files = [f for f in message["files"] if is_video_file(f)] | |
image_files = [f for f in message["files"] if is_image_file(f)] | |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
content_list = [{"type": "text", "text": message["text"]}] | |
for csv_path in csv_files: | |
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)}) | |
for txt_path in txt_files: | |
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)}) | |
for pdf_path in pdf_files: | |
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)}) | |
if video_files: | |
video_content, video_temp_files = process_video(video_files[0]) | |
content_list += video_content | |
temp_files.extend(video_temp_files) | |
return content_list, temp_files | |
if "<image>" in message["text"] and image_files: | |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
if content_list and content_list[0]["type"] == "text": | |
content_list = content_list[1:] | |
return interleaved_content + content_list, temp_files | |
else: | |
for img_path in image_files: | |
content_list.append({"type": "image", "url": img_path}) | |
return content_list, temp_files | |
# ============================================================================= | |
# history -> LLM ๋ฉ์์ง ๋ณํ | |
# ============================================================================= | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
elif isinstance(content, list) and len(content) > 0: | |
file_path = content[0] | |
if is_image_file(file_path): | |
current_user_content.append({"type": "image", "url": file_path}) | |
else: | |
current_user_content.append({"type": "text", "text": f"[ํ์ผ: {os.path.basename(file_path)}]"}) | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
return messages | |
# ============================================================================= | |
# ๋ชจ๋ธ ์์ฑ ํจ์ (OOM ์บ์น) | |
# ============================================================================= | |
def _model_gen_with_oom_catch(**kwargs): | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError: | |
raise RuntimeError("[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค.") | |
finally: | |
clear_cuda_cache() | |
# ============================================================================= | |
# ๋ฉ์ธ ์ถ๋ก ํจ์ | |
# ============================================================================= | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 512, | |
use_web_search: bool = False, | |
web_search_query: str = "", | |
age_group: str = "20๋", | |
mbti_personality: str = "INTP", | |
sexual_openness: int = 2, | |
image_gen: bool = False # "Image Gen" ์ฒดํฌ ์ฌ๋ถ | |
) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
temp_files = [] | |
try: | |
# ์์คํ ํ๋กฌํํธ์ ํ๋ฅด์๋ ์ ๋ณด ์ถ๊ฐ | |
persona = ( | |
f"{system_prompt.strip()}\n\n" | |
f"์ฑ๋ณ: ์ฌ์ฑ\n" | |
f"์ฐ๋ น๋: {age_group}\n" | |
f"MBTI ํ๋ฅด์๋: {mbti_personality}\n" | |
f"์น์์ผ ๊ฐ๋ฐฉ์ฑ (1~5): {sexual_openness}\n" | |
) | |
combined_system_msg = f"[์์คํ ํ๋กฌํํธ]\n{persona.strip()}\n\n" | |
if use_web_search: | |
user_text = message["text"] | |
ws_query = extract_keywords(user_text) | |
if ws_query.strip(): | |
logger.info(f"[์๋ ์น ๊ฒ์ ํค์๋] {ws_query!r}") | |
ws_result = do_web_search(ws_query) | |
combined_system_msg += f"[๊ฒ์ ๊ฒฐ๊ณผ (์์ 20๊ฐ ํญ๋ชฉ)]\n{ws_result}\n\n" | |
combined_system_msg += ( | |
"[์ฐธ๊ณ : ์ ๊ฒ์ ๊ฒฐ๊ณผ ๋งํฌ๋ฅผ ์ถ์ฒ๋ก ์ธ์ฉํ์ฌ ๋ต๋ณ]\n" | |
"[์ค์ ์ง์์ฌํญ]\n" | |
"1. ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์์ ์ฐพ์ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์.\n" | |
"2. ์ถ์ฒ ์ธ์ฉ ์ \"[์ถ์ฒ ์ ๋ชฉ](๋งํฌ)\" ํ์์ ๋งํฌ๋ค์ด ๋งํฌ๋ฅผ ์ฌ์ฉํ์ธ์.\n" | |
"3. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข ํฉํ์ฌ ๋ต๋ณํ์ธ์.\n" | |
"4. ๋ต๋ณ ๋ง์ง๋ง์ \"์ฐธ๊ณ ์๋ฃ:\" ์น์ ์ ์ถ๊ฐํ๊ณ ์ฌ์ฉํ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์.\n" | |
) | |
else: | |
combined_system_msg += "[์ ํจํ ํค์๋๊ฐ ์์ด ์น ๊ฒ์์ ๊ฑด๋๋๋๋ค]\n\n" | |
messages = [] | |
if combined_system_msg.strip(): | |
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]}) | |
messages.extend(process_history(history)) | |
user_content, user_temp_files = process_new_user_message(message) | |
temp_files.extend(user_temp_files) | |
for item in user_content: | |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(์ผ๋ถ ์๋ต)..." | |
messages.append({"role": "user", "content": user_content}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: | |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] | |
if 'attention_mask' in inputs: | |
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) | |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
t.start() | |
output_so_far = "" | |
for new_text in streamer: | |
output_so_far += new_text | |
yield output_so_far | |
except Exception as e: | |
logger.error(f"run ํจ์ ์๋ฌ: {str(e)}") | |
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" | |
finally: | |
for tmp in temp_files: | |
try: | |
if os.path.exists(tmp): | |
os.unlink(tmp) | |
logger.info(f"์์ ํ์ผ ์ญ์ ๋จ: {tmp}") | |
except Exception as ee: | |
logger.warning(f"์์ ํ์ผ {tmp} ์ญ์ ์คํจ: {ee}") | |
try: | |
del inputs, streamer | |
except Exception: | |
pass | |
clear_cuda_cache() | |
# ์์ ๋ ๋ชจ๋ธ ์คํ ํจ์ - ์ด๋ฏธ์ง ์์ฑ ๋ฐ ๊ฐค๋ฌ๋ฆฌ ์ถ๋ ฅ ์ฒ๋ฆฌ | |
def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query, | |
age_group, mbti_personality, sexual_openness, image_gen): | |
# ๊ฐค๋ฌ๋ฆฌ ์ด๊ธฐํ ๋ฐ ์จ๊ธฐ๊ธฐ | |
output_so_far = "" | |
gallery_update = gr.Gallery(visible=False, value=[]) | |
yield output_so_far, gallery_update | |
# ๊ธฐ์กด run ํจ์ ๋ก์ง | |
text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search, | |
web_search_query, age_group, mbti_personality, sexual_openness, image_gen) | |
for text_chunk in text_generator: | |
output_so_far = text_chunk | |
yield output_so_far, gallery_update | |
# ์ด๋ฏธ์ง ์์ฑ์ด ํ์ฑํ๋ ๊ฒฝ์ฐ ๊ฐค๋ฌ๋ฆฌ ์ ๋ฐ์ดํธ | |
if image_gen and message["text"].strip(): | |
try: | |
width, height = 512, 512 | |
guidance, steps, seed = 7.5, 30, 42 | |
logger.info(f"๊ฐค๋ฌ๋ฆฌ์ฉ ์ด๋ฏธ์ง ์์ฑ ํธ์ถ, ํ๋กฌํํธ: {message['text']}") | |
# API ํธ์ถํด์ ์ด๋ฏธ์ง ์์ฑ | |
image_result, seed_info = generate_image( | |
prompt=message["text"].strip(), | |
width=width, | |
height=height, | |
guidance=guidance, | |
inference_steps=steps, | |
seed=seed | |
) | |
if image_result: | |
# ์ง์ ์ด๋ฏธ์ง ๋ฐ์ดํฐ ์ฒ๋ฆฌ: base64 ๋ฌธ์์ด์ธ ๊ฒฝ์ฐ | |
if isinstance(image_result, str) and ( | |
image_result.startswith('data:') or | |
len(image_result) > 100 and '/' not in image_result | |
): | |
# base64 ์ด๋ฏธ์ง ๋ฌธ์์ด์ ํ์ผ๋ก ๋ณํ | |
try: | |
# data:image ์ ๋์ฌ ์ ๊ฑฐ | |
if image_result.startswith('data:'): | |
content_type, b64data = image_result.split(';base64,') | |
else: | |
b64data = image_result | |
content_type = "image/webp" # ๊ธฐ๋ณธ๊ฐ์ผ๋ก ๊ฐ์ | |
# base64 ๋์ฝ๋ฉ | |
image_bytes = base64.b64decode(b64data) | |
# ์์ ํ์ผ๋ก ์ ์ฅ | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
temp_file.write(image_bytes) | |
temp_path = temp_file.name | |
# ๊ฐค๋ฌ๋ฆฌ ํ์ ๋ฐ ์ด๋ฏธ์ง ์ถ๊ฐ | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*์ด๋ฏธ์ง๊ฐ ์์ฑ๋์ด ์๋ ๊ฐค๋ฌ๋ฆฌ์ ํ์๋ฉ๋๋ค.*", gallery_update | |
except Exception as e: | |
logger.error(f"Base64 ์ด๋ฏธ์ง ์ฒ๋ฆฌ ์ค๋ฅ: {e}") | |
yield output_so_far + f"\n\n(์ด๋ฏธ์ง ์ฒ๋ฆฌ ์ค ์ค๋ฅ: {e})", gallery_update | |
# ํ์ผ ๊ฒฝ๋ก์ธ ๊ฒฝ์ฐ | |
elif isinstance(image_result, str) and os.path.exists(image_result): | |
# ๋ก์ปฌ ํ์ผ ๊ฒฝ๋ก๋ฅผ ๊ทธ๋๋ก ์ฌ์ฉ | |
gallery_update = gr.Gallery(visible=True, value=[image_result]) | |
yield output_so_far + "\n\n*์ด๋ฏธ์ง๊ฐ ์์ฑ๋์ด ์๋ ๊ฐค๋ฌ๋ฆฌ์ ํ์๋ฉ๋๋ค.*", gallery_update | |
# /tmp ๊ฒฝ๋ก์ธ ๊ฒฝ์ฐ (API ์๋ฒ์๋ง ์กด์ฌํ๋ ํ์ผ) | |
elif isinstance(image_result, str) and '/tmp/' in image_result: | |
# API์์ ๋ฐํ๋ ํ์ผ ๊ฒฝ๋ก์์ ์ด๋ฏธ์ง ์ ๋ณด ์ถ์ถ | |
try: | |
# API ์๋ต์ base64 ์ธ์ฝ๋ฉ๋ ๋ฌธ์์ด๋ก ์ฒ๋ฆฌ | |
client = Client(API_URL) | |
result = client.predict( | |
prompt=message["text"].strip(), | |
api_name="/generate_base64_image" # base64 ๋ฐํ API | |
) | |
if isinstance(result, str) and (result.startswith('data:') or len(result) > 100): | |
# base64 ์ด๋ฏธ์ง ์ฒ๋ฆฌ | |
if result.startswith('data:'): | |
content_type, b64data = result.split(';base64,') | |
else: | |
b64data = result | |
# base64 ๋์ฝ๋ฉ | |
image_bytes = base64.b64decode(b64data) | |
# ์์ ํ์ผ๋ก ์ ์ฅ | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
temp_file.write(image_bytes) | |
temp_path = temp_file.name | |
# ๊ฐค๋ฌ๋ฆฌ ํ์ ๋ฐ ์ด๋ฏธ์ง ์ถ๊ฐ | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*์ด๋ฏธ์ง๊ฐ ์์ฑ๋์ด ์๋ ๊ฐค๋ฌ๋ฆฌ์ ํ์๋ฉ๋๋ค.*", gallery_update | |
else: | |
yield output_so_far + "\n\n(์ด๋ฏธ์ง ์์ฑ ์คํจ: ์ฌ๋ฐ๋ฅธ ํ์์ด ์๋๋๋ค)", gallery_update | |
except Exception as e: | |
logger.error(f"๋์ฒด API ํธ์ถ ์ค ์ค๋ฅ: {e}") | |
yield output_so_far + f"\n\n(์ด๋ฏธ์ง ์์ฑ ์คํจ: {e})", gallery_update | |
# URL์ธ ๊ฒฝ์ฐ | |
elif isinstance(image_result, str) and ( | |
image_result.startswith('http://') or | |
image_result.startswith('https://') | |
): | |
try: | |
# URL์์ ์ด๋ฏธ์ง ๋ค์ด๋ก๋ | |
response = requests.get(image_result, timeout=10) | |
response.raise_for_status() | |
# ์์ ํ์ผ๋ก ์ ์ฅ | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
temp_file.write(response.content) | |
temp_path = temp_file.name | |
# ๊ฐค๋ฌ๋ฆฌ ํ์ ๋ฐ ์ด๋ฏธ์ง ์ถ๊ฐ | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*์ด๋ฏธ์ง๊ฐ ์์ฑ๋์ด ์๋ ๊ฐค๋ฌ๋ฆฌ์ ํ์๋ฉ๋๋ค.*", gallery_update | |
except Exception as e: | |
logger.error(f"URL ์ด๋ฏธ์ง ๋ค์ด๋ก๋ ์ค๋ฅ: {e}") | |
yield output_so_far + f"\n\n(์ด๋ฏธ์ง ๋ค์ด๋ก๋ ์ค ์ค๋ฅ: {e})", gallery_update | |
# ์ด๋ฏธ์ง ๊ฐ์ฒด์ธ ๊ฒฝ์ฐ (PIL Image ๋ฑ) | |
elif hasattr(image_result, 'save'): | |
try: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
image_result.save(temp_file.name) | |
temp_path = temp_file.name | |
# ๊ฐค๋ฌ๋ฆฌ ํ์ ๋ฐ ์ด๋ฏธ์ง ์ถ๊ฐ | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*์ด๋ฏธ์ง๊ฐ ์์ฑ๋์ด ์๋ ๊ฐค๋ฌ๋ฆฌ์ ํ์๋ฉ๋๋ค.*", gallery_update | |
except Exception as e: | |
logger.error(f"์ด๋ฏธ์ง ๊ฐ์ฒด ์ ์ฅ ์ค๋ฅ: {e}") | |
yield output_so_far + f"\n\n(์ด๋ฏธ์ง ๊ฐ์ฒด ์ ์ฅ ์ค ์ค๋ฅ: {e})", gallery_update | |
else: | |
# ๋ค๋ฅธ ํ์์ ์ด๋ฏธ์ง ๊ฒฐ๊ณผ | |
yield output_so_far + f"\n\n(์ง์๋์ง ์๋ ์ด๋ฏธ์ง ํ์: {type(image_result)})", gallery_update | |
else: | |
yield output_so_far + f"\n\n(์ด๋ฏธ์ง ์์ฑ ์คํจ: {seed_info})", gallery_update | |
except Exception as e: | |
logger.error(f"๊ฐค๋ฌ๋ฆฌ์ฉ ์ด๋ฏธ์ง ์์ฑ ์ค ์ค๋ฅ: {e}") | |
yield output_so_far + f"\n\n(์ด๋ฏธ์ง ์์ฑ ์ค ์ค๋ฅ: {e})", gallery_update | |
# ============================================================================= | |
# ์์๋ค: ๊ธฐ์กด ์ด๋ฏธ์ง/๋น๋์ค ์์ 12๊ฐ + AI ๋ฐ์ดํ ์๋๋ฆฌ์ค ์์ 6๊ฐ | |
# ============================================================================= | |
examples = [ | |
[ | |
{ | |
"text": "๋ PDF ํ์ผ์ ๋ด์ฉ์ ๋น๊ตํ์ธ์.", | |
"files": [ | |
"assets/additional-examples/before.pdf", | |
"assets/additional-examples/after.pdf", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "CSV ํ์ผ์ ๋ด์ฉ์ ์์ฝ ๋ฐ ๋ถ์ํ์ธ์.", | |
"files": ["assets/additional-examples/sample-csv.csv"], | |
} | |
], | |
[ | |
{ | |
"text": "์น์ ํ๊ณ ์ดํด์ฌ ๋ง์ ์ฌ์์น๊ตฌ ์ญํ ์ ๋งก์ผ์ธ์. ์ด ์์์ ์ค๋ช ํด ์ฃผ์ธ์.", | |
"files": ["assets/additional-examples/tmp.mp4"], | |
} | |
], | |
[ | |
{ | |
"text": "ํ์ง๋ฅผ ์ค๋ช ํ๊ณ ๊ทธ ์์ ๊ธ์จ๋ฅผ ์ฝ์ด ์ฃผ์ธ์.", | |
"files": ["assets/additional-examples/maz.jpg"], | |
} | |
], | |
[ | |
{ | |
"text": "์ ๋ ์ด๋ฏธ ์ด ๋ณด์ถฉ์ ๋ฅผ ๊ฐ์ง๊ณ ์๊ณ <image> ์ด ์ ํ๋ ๊ตฌ๋งคํ ๊ณํ์ ๋๋ค. ํจ๊ป ๋ณต์ฉํ ๋ ์ฃผ์ํ ์ ์ด ์๋์?", | |
"files": [ | |
"assets/additional-examples/pill1.png", | |
"assets/additional-examples/pill2.png" | |
], | |
} | |
], | |
[ | |
{ | |
"text": "์ด ์ ๋ถ ๋ฌธ์ ๋ฅผ ํ์ด ์ฃผ์ธ์.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
[ | |
{ | |
"text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐํ๋์๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "์ด ์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "์ด ์ด๋ฏธ์ง์ ์ผ์นํ๋ ๋ง๋ ์ฐจํธ๋ฅผ ๊ทธ๋ฆฌ๊ธฐ ์ํ matplotlib๋ฅผ ์ฌ์ฉํ๋ Python ์ฝ๋๋ฅผ ์์ฑํด ์ฃผ์ธ์.", | |
"files": ["assets/additional-examples/barchart.png"], | |
} | |
], | |
[ | |
{ | |
"text": "์ด๋ฏธ์ง์ ํ ์คํธ๋ฅผ ์ฝ๊ณ Markdown ํ์์ผ๋ก ์์ฑํด ์ฃผ์ธ์.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "์ด ํ์งํ์ ๋ฌด์จ ๊ธ์๊ฐ ์ฐ์ฌ ์๋์?", | |
"files": ["assets/sample-images/02.png"], | |
} | |
], | |
[ | |
{ | |
"text": "๋ ์ด๋ฏธ์ง๋ฅผ ๋น๊ตํ๊ณ ์ ์ฌ์ ๊ณผ ์ฐจ์ด์ ์ ์ค๋ช ํด ์ฃผ์ธ์.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
[ | |
{ | |
"text": "๋กคํ๋ ์ด ํด๋ด ์๋ค. ๋น์ ์ ์ ์ ๋ ์์๊ฐ๊ณ ์ถ์ ์๋ก์ด ์จ๋ผ์ธ ๋ฐ์ดํธ ์๋์ ๋๋ค. ๋ค์ ํ๊ณ ๋ฐฐ๋ ค ๊น์ ๋ฐฉ์์ผ๋ก ์๊ธฐ ์๊ฐ๋ฅผ ํด์ฃผ์ธ์!", | |
} | |
], | |
[ | |
{ | |
"text": "ํด๋ณ์ ๊ฑท๋ ๋ ๋ฒ์งธ ๋ฐ์ดํธ ์ค์ ๋๋ค. ์ฅ๋์ค๋ฌ์ด ๋ํ์ ๋ถ๋๋ฌ์ด ํ๋ฌํ ์ผ๋ก ์ฅ๋ฉด์ ์ด์ด๋๊ฐ ์ฃผ์ธ์.", | |
} | |
], | |
[ | |
{ | |
"text": "์ข์ํ๋ ์ฌ๋์๊ฒ ๋ฉ์์ง๋ฅผ ๋ณด๋ด๋ ๊ฒ์ด ๋ถ์ํฉ๋๋ค. ๊ฒฉ๋ ค์ ๋ง์ด๋ ์ ๊ทผ ๋ฐฉ๋ฒ์ ๋ํ ์ ์์ ํด์ค ์ ์๋์?", | |
} | |
], | |
[ | |
{ | |
"text": "๊ด๊ณ์์ ์ด๋ ค์์ ๊ทน๋ณตํ ๋ ์ฌ๋์ ๋ํ ๋ก๋งจํฑํ ์ด์ผ๊ธฐ๋ฅผ ๋ค๋ ค์ฃผ์ธ์.", | |
} | |
], | |
[ | |
{ | |
"text": "์์ ์ธ ๋ฐฉ์์ผ๋ก ์ฌ๋์ ํํํ๊ณ ์ถ์ต๋๋ค. ์ ํํธ๋๋ฅผ ์ํ ์ง์ฌ์ด ๋ด๊ธด ์๋ฅผ ์์ฑํ๋ ๋ฐ ๋์์ ์ค ์ ์๋์?", | |
} | |
], | |
[ | |
{ | |
"text": "์์ ๋คํผ์ด ์์์ต๋๋ค. ์ง์ฌ์ผ๋ก ์ฌ๊ณผํ๋ฉด์ ์ ๊ฐ์ ์ ํํํ ์ ์๋ ๋ฐฉ๋ฒ์ ์ฐพ์์ฃผ์ธ์.", | |
} | |
], | |
] | |
# ============================================================================= | |
# Gradio UI (Blocks) ๊ตฌ์ฑ | |
# ============================================================================= | |
# 1. Gradio Blocks UI ์์ - ๊ฐค๋ฌ๋ฆฌ ์ปดํฌ๋ํธ ์ถ๊ฐ | |
css = """ | |
.gradio-container { | |
background: rgba(255, 255, 255, 0.7); | |
padding: 30px 40px; | |
margin: 20px auto; | |
width: 100% !important; | |
max-width: none !important; | |
} | |
""" | |
title_html = """ | |
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ HeartSync ๐ </h1> | |
<p align="center" style="font-size:1.1em; color:#555;"> | |
โ FLUX ์ด๋ฏธ์ง ์์ฑ โ ์ถ๋ก โ ๊ฒ์ด ํด์ โ ๋ฉํฐ๋ชจ๋ฌ & VLM โ ์ค์๊ฐ ์น ๊ฒ์ โ RAG <br> | |
</p> | |
""" | |
with gr.Blocks(css=css, title="HeartSync") as demo: | |
gr.Markdown(title_html) | |
# ์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ ์ ์ฅํ ๊ฐค๋ฌ๋ฆฌ ์ปดํฌ๋ํธ (์ด ๋ถ๋ถ์ด ์๋ก ์ถ๊ฐ๋จ) | |
generated_images = gr.Gallery( | |
label="์์ฑ๋ ์ด๋ฏธ์ง", | |
show_label=True, | |
visible=False, | |
elem_id="generated_images", | |
columns=2, | |
height="auto", | |
object_fit="contain" | |
) | |
with gr.Row(): | |
web_search_checkbox = gr.Checkbox(label="์ฌ๋ ์๋ ์ฐ๊ตฌ", value=False) | |
image_gen_checkbox = gr.Checkbox(label="์ด๋ฏธ์ง ์์ฑ", value=False) | |
base_system_prompt_box = gr.Textbox( | |
lines=3, | |
value="๋น์ ์ ๊น์ด ์ฌ๊ณ ํ๋ AI์ ๋๋ค. ํญ์ ๋ ผ๋ฆฌ์ ์ด๊ณ ์ฐฝ์์ ์ผ๋ก ๋ฌธ์ ๋ฅผ ํด๊ฒฐํฉ๋๋ค.\nํ๋ฅด์๋: ๋น์ ์ ๋ค์ ํ๊ณ ์ฌ๋์ด ๋์น๋ ์ฌ์์น๊ตฌ์ ๋๋ค.", | |
label="๊ธฐ๋ณธ ์์คํ ํ๋กฌํํธ", | |
visible=False | |
) | |
with gr.Row(): | |
age_group_dropdown = gr.Dropdown( | |
label="์ฐ๋ น๋ ์ ํ (๊ธฐ๋ณธ 20๋)", | |
choices=["10๋", "20๋", "30~40๋", "50~60๋", "70๋ ์ด์"], | |
value="20๋", | |
interactive=True | |
) | |
mbti_choices = [ | |
"INTJ (์ฉ์์ฃผ๋ํ ์ ๋ต๊ฐ)", | |
"INTP (๋ ผ๋ฆฌ์ ์ธ ์ฌ์๊ฐ)", | |
"ENTJ (๋๋ดํ ํต์์)", | |
"ENTP (๋จ๊ฑฐ์ด ๋ ผ์๊ฐ)", | |
"INFJ (์ ์์ ์นํธ์)", | |
"INFP (์ด์ ์ ์ธ ์ค์ฌ์)", | |
"ENFJ (์ ์๋ก์ด ์ฌํ์ด๋๊ฐ)", | |
"ENFP (์ฌ๊ธฐ๋ฐ๋ํ ํ๋๊ฐ)", | |
"ISTJ (์ฒญ๋ ด๊ฒฐ๋ฐฑํ ๋ ผ๋ฆฌ์ฃผ์์)", | |
"ISFJ (์ฉ๊ฐํ ์ํธ์)", | |
"ESTJ (์๊ฒฉํ ๊ด๋ฆฌ์)", | |
"ESFJ (์ฌ๊ต์ ์ธ ์ธ๊ต๊ด)", | |
"ISTP (๋ง๋ฅ ์ฌ์ฃผ๊พผ)", | |
"ISFP (ํธ๊ธฐ์ฌ ๋ง์ ์์ ๊ฐ)", | |
"ESTP (๋ชจํ์ ์ฆ๊ธฐ๋ ์ฌ์ ๊ฐ)", | |
"ESFP (์์ ๋ก์ด ์ํผ์ ์ฐ์์ธ)" | |
] | |
mbti_dropdown = gr.Dropdown( | |
label="AI ํ๋ฅด์๋ MBTI (๊ธฐ๋ณธ INTP)", | |
choices=mbti_choices, | |
value="INTP (๋ ผ๋ฆฌ์ ์ธ ์ฌ์๊ฐ)", | |
interactive=True | |
) | |
sexual_openness_slider = gr.Slider( | |
minimum=1, maximum=5, step=1, value=2, | |
label="์น์์ผ ๊ด์ฌ๋/๊ฐ๋ฐฉ์ฑ (1~5, ๊ธฐ๋ณธ=2)", | |
interactive=True | |
) | |
max_tokens_slider = gr.Slider( | |
label="์ต๋ ์์ฑ ํ ํฐ ์", | |
minimum=100, maximum=8000, step=50, value=1000, | |
visible=False | |
) | |
web_search_text = gr.Textbox( | |
lines=1, | |
label="์น ๊ฒ์ ์ฟผ๋ฆฌ (๋ฏธ์ฌ์ฉ)", | |
placeholder="์ง์ ์ ๋ ฅํ ํ์ ์์", | |
visible=False | |
) | |
# ์ฑํ ์ธํฐํ์ด์ค ์์ฑ - ์์ ๋ run ํจ์ ์ฌ์ฉ | |
chat = gr.ChatInterface( | |
fn=modified_run, # ์ฌ๊ธฐ์ ์์ ๋ ํจ์ ์ฌ์ฉ | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"], | |
file_count="multiple", | |
autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
base_system_prompt_box, | |
max_tokens_slider, | |
web_search_checkbox, | |
web_search_text, | |
age_group_dropdown, | |
mbti_dropdown, | |
sexual_openness_slider, | |
image_gen_checkbox, | |
], | |
additional_outputs=[ | |
generated_images, # ๊ฐค๋ฌ๋ฆฌ ์ปดํฌ๋ํธ๋ฅผ ์ถ๋ ฅ์ผ๋ก ์ถ๊ฐ | |
], | |
stop_btn=False, | |
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>', | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths=None, | |
delete_cache=(1800, 1800), | |
) | |
with gr.Row(elem_id="examples_row"): | |
with gr.Column(scale=12, elem_id="examples_container"): | |
gr.Markdown("### ์์ ์ ๋ ฅ (ํด๋ฆญํ์ฌ ๋ถ๋ฌ์ค๊ธฐ)") | |
if __name__ == "__main__": | |
demo.launch(share=True) | |