Spaces:
Running
Running
File size: 13,841 Bytes
b245167 729acc6 b245167 efc47bc b245167 efc47bc b245167 efc47bc b245167 729acc6 b245167 074ccc3 99fb8e0 241dc23 074ccc3 241dc23 99fb8e0 efc47bc d06067f 241dc23 d06067f b245167 deeb5f1 b245167 1cd4ae4 1ac15af b245167 729acc6 b245167 729acc6 b245167 729acc6 b245167 729acc6 b245167 efc47bc b245167 729acc6 b245167 deeb5f1 729acc6 b245167 25ec4e4 b245167 efc47bc b245167 bf608d6 b245167 bbc17d0 bf608d6 bbc17d0 bf608d6 bbc17d0 68d7b9b b245167 bbc17d0 b245167 729acc6 b245167 bf608d6 b245167 deeb5f1 b245167 efc47bc b245167 729acc6 b245167 bf608d6 b245167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import random
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import InferenceClient, login
from transformers import AutoTokenizer
from pydantic import BaseModel
from gradio_client import Client, file
from starlette.responses import StreamingResponse
import re
from datetime import datetime
import json
import requests
import base64
import os
import time
from PIL import Image
from io import BytesIO
import aiohttp
import asyncio
from typing import Optional
from dotenv import load_dotenv
import boto3
from groq import Groq
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
groqClient = Groq (api_key=os.environ.get("GROQ_API_KEY"))
load_dotenv()
token = os.environ.get("HF_TOKEN")
login(token)
prompt_model = "llama-3.1-8b-instant"
magic_prompt_model = "Gustavosta/MagicPrompt-Stable-Diffusion"
options = {"use_cache": False, "wait_for_model": True}
parameters = {"return_full_text":False, "max_new_tokens":300}
headers = {"Authorization": f"Bearer {token}", "x-use-cache":"0", 'Content-Type' :'application/json'}
API_URL = f'https://api-inference.huggingface.co/models/'
perm_negative_prompt = "watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry"
cwd = os.getcwd()
pictures_directory = os.path.join(cwd, 'pictures')
last_two_models = []
class Item(BaseModel):
prompt: str
steps: int
guidance: float
modelID: str
modelLabel: str
image: Optional[str] = None
target: str
control: float
class Core(BaseModel):
itemString: str
@app.get("/core")
async def core():
if not os.path.exists(pictures_directory):
os.makedirs(pictures_directory)
async def generator():
# Start JSON array
yield '['
first = True
for filename in os.listdir(pictures_directory):
if filename.endswith('.json'):
file_path = os.path.join(pictures_directory, filename)
with open(file_path, 'r') as file:
data = json.load(file)
# For JSON formatting, ensure only the first item doesn't have a preceding comma
if first:
first = False
else:
yield ','
yield json.dumps({"base64": data["base64image"], "prompt": data["returnedPrompt"]})
# End JSON array
yield ']'
return StreamingResponse(generator(), media_type="application/json")
def getPrompt(prompt, modelID, attempts=1):
response = {}
print(modelID)
try:
if modelID != magic_prompt_model:
chat = [
{"role": "user", "content": prompt_base},
{"role": "assistant", "content": prompt_assistant},
{"role": "user", "content": prompt},
]
response = groqClient.chat.completions.create(messages=chat, temperature=1, max_tokens=2048, top_p=1, stream=False, stop=None, model=modelID)
else:
apiData={"inputs":prompt, "parameters": parameters, "options": options, "timeout": 45}
response = requests.post(API_URL + modelID, headers=headers, data=json.dumps(apiData))
return response.json()
except Exception as e:
print(f"An error occurred: {e}")
if attempts < 3:
getPrompt(prompt, modelID, attempts + 1)
return response
@app.post("/inferencePrompt")
def inferencePrompt(item: Core):
print("Start API Inference Prompt")
try:
plain_response_data = getPrompt(item.itemString, prompt_model)
magic_response_data = getPrompt(item.itemString, magic_prompt_model)
returnJson = {"plain": plain_response_data.choices[0].message.content, "magic": item.itemString + magic_response_data[0]["generated_text"]}
print(f'Return Json {returnJson}')
return returnJson
except Exception as e:
returnJson = {"plain": f'An Error occured: {e}', "magic": f'An Error occured: {e}'}
async def wake_model(modelID):
data = {"inputs":"wake up call", "options":options}
headers = {"Authorization": f"Bearer {token}"}
api_data = json.dumps(data)
try:
timeout = aiohttp.ClientTimeout(total=60) # Set timeout to 60 seconds
async with aiohttp.ClientSession(timeout=timeout) as session:
async with session.post(API_URL + modelID, headers=headers, data=api_data) as response:
pass
print('Model Waking')
except Exception as e:
print(f"An error occurred: {e}")
def formatReturn(result):
img = Image.open(result)
img.save("test.png")
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
base64_img = base64.b64encode(img_byte_arr).decode('utf-8')
return base64_img
def save_image(base64image, item, model, NSFW):
if not NSFW:
data = {"base64image": "data:image/png;base64," + base64image, "returnedPrompt": "Model:\n" + model + "\n\nPrompt:\n" + item.prompt, "prompt": item.prompt, "steps": item.steps, "guidance": item.guidance, "control": item.control, "target": item.target}
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
file_path = os.path.join(pictures_directory, f'{timestamp}.json')
with open(file_path, 'w') as json_file:
json.dump(data, json_file)
def gradioSD3(item):
client = Client(item.modelID, hf_token=token)
result = client.predict(
prompt=item.prompt,
negative_prompt=perm_negative_prompt,
guidance_scale=item.guidance,
num_inference_steps=item.steps,
api_name="/infer"
)
return formatReturn(result[0])
def gradioAuraFlow(item):
client = Client("multimodalart/AuraFlow")
result = client.predict(
prompt=item.prompt,
negative_prompt=perm_negative_prompt,
randomize_seed=True,
guidance_scale=item.guidance,
num_inference_steps=item.steps,
api_name="/infer"
)
print(result[0])
return formatReturn(result[0]["value"])
def gradioHatmanInstantStyle(item):
client = Client("Hatman/InstantStyle")
image_stream = BytesIO(base64.b64decode(item.image.split("base64,")[1]))
image = Image.open(image_stream)
image.save("style.png")
result = client.predict(
image_pil=file("style.png"),
prompt=item.prompt,
n_prompt=perm_negative_prompt,
scale=1,
control_scale=item.control,
guidance_scale=item.guidance,
num_inference_steps=item.steps,
seed=1,
target=item.target,
api_name="/create_image"
)
return formatReturn(result)
def lambda_image(prompt, modelID):
data = {
"prompt": prompt,
"modelID": modelID
}
serialized_data = json.dumps(data)
aws_id = os.environ.get("AWS_ID")
aws_secret = os.environ.get("AWS_SECRET")
aws_region = os.environ.get("AWS_REGION")
try:
session = boto3.Session(aws_access_key_id=aws_id, aws_secret_access_key=aws_secret, region_name=aws_region)
lambda_client = session.client('lambda')
response = lambda_client.invoke(
FunctionName='pixel_prompt_lambda',
InvocationType='RequestResponse',
Payload=serialized_data
)
response_payload = response['Payload'].read()
response_data = json.loads(response_payload)
except Exception as e:
print(f"An error occurred: {e}")
return response_data['body']
def inferenceAPI(model, item, attempts = 1):
print(f'Inference model {model}')
if attempts > 5:
return 'An error occured when Processing', model
prompt = item.prompt
if "dallinmackay" in model:
prompt = "lvngvncnt, " + item.prompt
data = {"inputs":prompt, "negative_prompt": perm_negative_prompt, "options":options, "timeout": 45}
api_data = json.dumps(data)
try:
response = requests.request("POST", API_URL + model, headers=headers, data=api_data)
if response is None:
inferenceAPI(get_random_model(activeModels['text-to-image']), item, attempts+1)
print(response.content[0:200])
image_stream = BytesIO(response.content)
image = Image.open(image_stream)
image.save("response.png")
with open('response.png', 'rb') as f:
base64_img = base64.b64encode(f.read()).decode('utf-8')
return model, base64_img
except Exception as e:
print(f'Error When Processing Image: {e}')
activeModels = InferenceClient().list_deployed_models()
model = get_random_model(activeModels['text-to-image'])
pattern = r'^(.{1,30})\/(.{1,50})$'
if not re.match(pattern, model):
return "error model not valid", model
return inferenceAPI(model, item, attempts+1)
def get_random_model(models):
global last_two_models
model = None
priorities = [
"stabilityai/stable-diffusion-3.5-large-turbo",
"stabilityai/stable-diffusion-3.5-large",
"black-forest-labs",
"kandinsky-community",
"Kolors-diffusers",
"Juggernaut",
"insaneRealistic",
"MajicMIX",
"digiautogpt3",
"fluently"
]
for priority in priorities:
for i, model_name in enumerate(models):
if priority in model_name and model_name not in last_two_models:
model = models[i]
break
if model is not None:
break
if model is None:
print("Choosing randomly")
model = random.choice(models)
last_two_models.append(model)
last_two_models = last_two_models[-5:]
return model
def nsfw_check(item, attempts=1):
try:
API_URL = "https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection"
with open('response.png', 'rb') as f:
data = f.read()
response = requests.request("POST", API_URL, headers=headers, data=data)
decoded_response = response.content.decode("utf-8")
print(item.prompt)
print(decoded_response)
json_response = json.loads(decoded_response)
if "error" in json_response:
time.sleep(json_response["estimated_time"])
return nsfw_check(item, attempts+1)
scores = {item['label']: item['score'] for item in json_response}
error_msg = scores.get('nsfw', 0) > .1
return error_msg
except json.JSONDecodeError as e:
print(f'JSON Decoding Error: {e}')
return True
except Exception as e:
print(f'NSFW Check Error: {e}')
if attempts > 30:
return True
return nsfw_check(item, attempts+1)
@app.post("/api")
async def inference(item: Item):
print("Start API Inference")
activeModels = InferenceClient().list_deployed_models()
base64_img = ""
model = item.modelID
print(f'Start Model {model}')
NSFW = False
try:
if item.image:
model = "stabilityai/stable-diffusion-xl-base-1.0"
base64_img = gradioHatmanInstantStyle(item)
elif "AuraFlow" in item.modelID:
base64_img = gradioAuraFlow(item)
elif "Random" in item.modelID:
model = get_random_model(activeModels['text-to-image'])
pattern = r'^(.{1,30})\/(.{1,50})$'
if not re.match(pattern, model):
raise ValueError("Model not Valid")
model, base64_img= inferenceAPI(model, item)
elif "stable-diffusion-3" in item.modelID:
base64_img = gradioSD3(item)
elif "Voxel" in item.modelID or "pixel" in item.modelID:
prompt = item.prompt
if "Voxel" in item.modelID:
prompt = "voxel style, " + item.prompt
base64_img = lambda_image(prompt, item.modelID)
elif item.modelID not in activeModels['text-to-image']:
asyncio.create_task(wake_model(item.modelID))
return {"output": "Model Waking"}
else:
base64_img, model = inferenceAPI(item.modelID, item)
if 'error' in base64_img:
return {"output": base64_img, "model": model}
NSFW = nsfw_check(item)
save_image(base64_img, item, model, NSFW)
except Exception as e:
print(f"An error occurred: {e}")
base64_img = f"An error occurred: {e}"
return {"output": base64_img, "model": model, "NSFW": NSFW}
prompt_base = 'Instructions:\
\
1. Take the provided seed string as inspiration.\
2. Generate a prompt that is clear, vivid, and imaginative.\
3. This is a visual image so any reference to senses other than sight should be avoided.\
4. Ensure the prompt is between 90 and 100 tokens.\
5. Return only the prompt.\
Format your response as follows:\
Stable Diffusion Prompt: [Your prompt here]\
\
Remember:\
\
- The prompt should be descriptive.\
- Avoid overly complex or abstract phrases.\
- Make sure the prompt evokes strong imagery and can guide the creation of visual content.\
- Make sure the prompt is between 90 and 100 tokens.'
prompt_assistant = "I am ready to return a prompt that is between 90 and 100 tokens. What is your seed string?"
app.mount("/", StaticFiles(directory="web-build", html=True), name="build")
@app.get('/')
def homepage() -> FileResponse:
return FileResponse(path="/app/build/index.html", media_type="text/html")
|