import torch import random import spaces ## For ZeroGPU import gradio as gr from PIL import Image from models_transformer_sd3 import SD3Transformer2DModel from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline import os from huggingface_hub import login TOKEN = os.getenv('TOKEN') login(TOKEN) model_path = 'stabilityai/stable-diffusion-3.5-large' ip_adapter_path = './ip-adapter.bin' ##ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin") image_encoder_path = "google/siglip-so400m-patch14-384" transformer = SD3Transformer2DModel.from_pretrained( model_path, subfolder="transformer", torch_dtype=torch.bfloat16 ) pipe = StableDiffusion3Pipeline.from_pretrained( model_path, transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") pipe.init_ipadapter( ip_adapter_path=ip_adapter_path, image_encoder_path=image_encoder_path, nb_token=64, ) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, 2000) return seed def resize_img(image, max_size=1024): width, height = image.size scaling_factor = min(max_size / width, max_size / height) new_width = int(width * scaling_factor) new_height = int(height * scaling_factor) return image.resize((new_width, new_height), Image.LANCZOS) @spaces.GPU() ## For ZeroGPU def create_image(image_pil, prompt, n_prompt, scale, control_scale, guidance_scale, num_inference_steps, seed, target="Load only style blocks", ): if image_pil is None: return None if target !="Load original IP-Adapter": if target=="Load only style blocks": scale = { "up": {"block_0": [0.0, control_scale, 0.0]}, } elif target=="Load only layout blocks": scale = { "down": {"block_2": [0.0, control_scale]}, } elif target == "Load style+layout block": scale = { "down": {"block_2": [0.0, control_scale]}, "up": {"block_0": [0.0, control_scale, 0.0]}, } #pipe.set_ip_adapter_scale(scale) ## Waiting for SD3 Diffuser integration if not isinstance(image_pil, Image.Image): # If it's a file image_pil = Image.fromarray(image_pil) image_pil = resize_img(image_pil) generator = torch.Generator().manual_seed(randomize_seed_fn(seed, True)) image = pipe( width=1024, height=1024, prompt=prompt, negative_prompt="lowres, low quality, worst quality", generator=generator, ## For ZeroGPU no device="cpu" clip_image=image_pil, ipadapter_scale=1, ).images[0] return image # Description title = r"""