Hatman commited on
Commit
937046a
·
verified ·
1 Parent(s): 63c0b5b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -15
app.py CHANGED
@@ -7,30 +7,20 @@ import spaces
7
  import gradio as gr
8
 
9
  from diffusers import AutoPipelineForText2Image
 
10
  from torchvision import transforms
11
 
12
  device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
13
  dtype = torch.float16 if torch.cuda.is_available() else torch.float32
14
- pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype).to(device)
15
- pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin", device=device, dtype=dtype)
16
-
17
- def preprocess_image(image_pil, target_size=(1024, 1024)):
18
- # Resize and convert to tensor
19
- transform = transforms.Compose([
20
- transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS),
21
- transforms.ToTensor(),
22
- ])
23
- image = transform(image_pil).unsqueeze(0)
24
- image = image.to(device=device, dtype=dtype)
25
-
26
- return image
27
 
28
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
29
  if randomize_seed:
30
  seed = random.randint(0, 2000)
31
  return seed
32
 
33
- @spaces.GPU()
34
  def create_image(image_pil,
35
  prompt,
36
  n_prompt,
@@ -57,8 +47,9 @@ def create_image(image_pil,
57
  }
58
  pipeline.set_ip_adapter_scale(scale)
59
 
60
- style_image = preprocess_image(image_pil)
61
  generator = torch.Generator(device=device).manual_seed(randomize_seed_fn(seed, False))
 
62
  image = pipeline(
63
  prompt=prompt,
64
  ip_adapter_image=style_image,
 
7
  import gradio as gr
8
 
9
  from diffusers import AutoPipelineForText2Image
10
+ from diffusers.utils import load_image
11
  from torchvision import transforms
12
 
13
  device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
14
  dtype = torch.float16 if torch.cuda.is_available() else torch.float32
15
+ pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype, device_map=device)
16
+ pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
19
  if randomize_seed:
20
  seed = random.randint(0, 2000)
21
  return seed
22
 
23
+ @spaces.GPU(enable_queue=True)
24
  def create_image(image_pil,
25
  prompt,
26
  n_prompt,
 
47
  }
48
  pipeline.set_ip_adapter_scale(scale)
49
 
50
+ style_image = load_image(image_pil)
51
  generator = torch.Generator(device=device).manual_seed(randomize_seed_fn(seed, False))
52
+
53
  image = pipeline(
54
  prompt=prompt,
55
  ip_adapter_image=style_image,