Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,266 +1,266 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
sys.path.append('./')
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import os
|
| 6 |
-
import cv2
|
| 7 |
-
import torch
|
| 8 |
-
import random
|
| 9 |
-
import numpy as np
|
| 10 |
-
from PIL import Image
|
| 11 |
-
from diffusers import
|
| 12 |
-
|
| 13 |
-
import spaces
|
| 14 |
-
import gradio as gr
|
| 15 |
-
from huggingface_hub import hf_hub_download
|
| 16 |
-
|
| 17 |
-
from ip_adapter import IPAdapterXL
|
| 18 |
-
|
| 19 |
-
import os
|
| 20 |
-
os.system("git lfs install")
|
| 21 |
-
os.system("git clone https://huggingface.co/h94/IP-Adapter")
|
| 22 |
-
os.system("mv IP-Adapter/sdxl_models sdxl_models")
|
| 23 |
-
|
| 24 |
-
# global variable
|
| 25 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
-
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
| 28 |
-
|
| 29 |
-
# initialization
|
| 30 |
-
base_model_path = "
|
| 31 |
-
image_encoder_path = "sdxl_models/image_encoder"
|
| 32 |
-
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
|
| 33 |
-
|
| 34 |
-
controlnet_path = "
|
| 35 |
-
controlnet =
|
| 36 |
-
|
| 37 |
-
# load SDXL pipeline
|
| 38 |
-
pipe =
|
| 39 |
-
base_model_path,
|
| 40 |
-
controlnet=controlnet,
|
| 41 |
-
torch_dtype=torch.float16,
|
| 42 |
-
add_watermarker=False,
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
# load ip-adapter
|
| 46 |
-
# target_blocks=["block"] for original IP-Adapter
|
| 47 |
-
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
| 48 |
-
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
|
| 49 |
-
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
|
| 50 |
-
|
| 51 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 52 |
-
if randomize_seed:
|
| 53 |
-
seed = random.randint(0, MAX_SEED)
|
| 54 |
-
return seed
|
| 55 |
-
|
| 56 |
-
def resize_img(
|
| 57 |
-
input_image,
|
| 58 |
-
max_side=1280,
|
| 59 |
-
min_side=1024,
|
| 60 |
-
size=None,
|
| 61 |
-
pad_to_max_side=False,
|
| 62 |
-
mode=Image.BILINEAR,
|
| 63 |
-
base_pixel_number=64,
|
| 64 |
-
):
|
| 65 |
-
w, h = input_image.size
|
| 66 |
-
if size is not None:
|
| 67 |
-
w_resize_new, h_resize_new = size
|
| 68 |
-
else:
|
| 69 |
-
ratio = min_side / min(h, w)
|
| 70 |
-
w, h = round(ratio * w), round(ratio * h)
|
| 71 |
-
ratio = max_side / max(h, w)
|
| 72 |
-
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
| 73 |
-
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
| 74 |
-
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
| 75 |
-
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
| 76 |
-
|
| 77 |
-
if pad_to_max_side:
|
| 78 |
-
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
| 79 |
-
offset_x = (max_side - w_resize_new) // 2
|
| 80 |
-
offset_y = (max_side - h_resize_new) // 2
|
| 81 |
-
res[
|
| 82 |
-
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
|
| 83 |
-
] = np.array(input_image)
|
| 84 |
-
input_image = Image.fromarray(res)
|
| 85 |
-
return input_image
|
| 86 |
-
|
| 87 |
-
@spaces.GPU(enable_queue=True)
|
| 88 |
-
def create_image(image_pil,
|
| 89 |
-
input_image,
|
| 90 |
-
prompt,
|
| 91 |
-
n_prompt,
|
| 92 |
-
scale,
|
| 93 |
-
control_scale,
|
| 94 |
-
guidance_scale,
|
| 95 |
-
num_samples,
|
| 96 |
-
num_inference_steps,
|
| 97 |
-
seed,
|
| 98 |
-
target="Load only style blocks",
|
| 99 |
-
neg_content_prompt=None,
|
| 100 |
-
neg_content_scale=0):
|
| 101 |
-
|
| 102 |
-
if isinstance(image_pil, np.ndarray):
|
| 103 |
-
image_pil = Image.fromarray(image_pil)
|
| 104 |
-
|
| 105 |
-
if target =="Load original IP-Adapter":
|
| 106 |
-
# target_blocks=["blocks"] for original IP-Adapter
|
| 107 |
-
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"])
|
| 108 |
-
elif target=="Load only style blocks":
|
| 109 |
-
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
| 110 |
-
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
|
| 111 |
-
elif target=="Load only layout blocks":
|
| 112 |
-
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
| 113 |
-
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["down_blocks.2.attentions.1"])
|
| 114 |
-
elif target == "Load style+layout block":
|
| 115 |
-
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
|
| 116 |
-
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"])
|
| 117 |
-
|
| 118 |
-
if input_image is not None:
|
| 119 |
-
input_image = resize_img(input_image, max_side=1024)
|
| 120 |
-
cv_input_image = pil_to_cv2(input_image)
|
| 121 |
-
detected_map = cv2.Canny(cv_input_image, 50, 200)
|
| 122 |
-
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
|
| 123 |
-
else:
|
| 124 |
-
canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255))
|
| 125 |
-
control_scale = 0
|
| 126 |
-
|
| 127 |
-
if float(control_scale) == 0:
|
| 128 |
-
canny_map = canny_map.resize((1024,1024))
|
| 129 |
-
|
| 130 |
-
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
|
| 131 |
-
images = ip_model.generate(pil_image=image_pil,
|
| 132 |
-
prompt=prompt,
|
| 133 |
-
negative_prompt=n_prompt,
|
| 134 |
-
scale=scale,
|
| 135 |
-
guidance_scale=guidance_scale,
|
| 136 |
-
num_samples=num_samples,
|
| 137 |
-
num_inference_steps=num_inference_steps,
|
| 138 |
-
seed=seed,
|
| 139 |
-
image=canny_map,
|
| 140 |
-
controlnet_conditioning_scale=float(control_scale),
|
| 141 |
-
neg_content_prompt=neg_content_prompt,
|
| 142 |
-
neg_content_scale=neg_content_scale
|
| 143 |
-
)
|
| 144 |
-
else:
|
| 145 |
-
images = ip_model.generate(pil_image=image_pil,
|
| 146 |
-
prompt=prompt,
|
| 147 |
-
negative_prompt=n_prompt,
|
| 148 |
-
scale=scale,
|
| 149 |
-
guidance_scale=guidance_scale,
|
| 150 |
-
num_samples=num_samples,
|
| 151 |
-
num_inference_steps=num_inference_steps,
|
| 152 |
-
seed=seed,
|
| 153 |
-
image=canny_map,
|
| 154 |
-
controlnet_conditioning_scale=float(control_scale),
|
| 155 |
-
)
|
| 156 |
-
return images
|
| 157 |
-
|
| 158 |
-
def pil_to_cv2(image_pil):
|
| 159 |
-
image_np = np.array(image_pil)
|
| 160 |
-
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 161 |
-
return image_cv2
|
| 162 |
-
|
| 163 |
-
# Description
|
| 164 |
-
title = r"""
|
| 165 |
-
<h1 align="center">InstantStyle</h1>
|
| 166 |
-
"""
|
| 167 |
-
|
| 168 |
-
description = r"""
|
| 169 |
-
How to use:<br>
|
| 170 |
-
1. Upload a style image.
|
| 171 |
-
2. Set stylization mode, only use style block by default.
|
| 172 |
-
2. Enter a text prompt, as done in normal text-to-image models.
|
| 173 |
-
3. Click the <b>Submit</b> button to begin customization.
|
| 174 |
-
4. Share your stylized photo with your friends and enjoy! π
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
Advanced usage:<br>
|
| 178 |
-
1. Click advanced options.
|
| 179 |
-
2. Upload another source image for image-based stylization using ControlNet.
|
| 180 |
-
3. Enter negative content prompt to avoid content leakage.
|
| 181 |
-
"""
|
| 182 |
-
|
| 183 |
-
article = r"""
|
| 184 |
-
---
|
| 185 |
-
```bibtex
|
| 186 |
-
@article{wang2024instantstyle,
|
| 187 |
-
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
|
| 188 |
-
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
|
| 189 |
-
journal={arXiv preprint arXiv:2404.02733},
|
| 190 |
-
year={2024}
|
| 191 |
-
}
|
| 192 |
-
```
|
| 193 |
-
"""
|
| 194 |
-
|
| 195 |
-
block = gr.Blocks().queue(max_size=10, api_open=True)
|
| 196 |
-
with block:
|
| 197 |
-
|
| 198 |
-
# description
|
| 199 |
-
gr.Markdown(title)
|
| 200 |
-
gr.Markdown(description)
|
| 201 |
-
|
| 202 |
-
with gr.Tabs():
|
| 203 |
-
with gr.Row():
|
| 204 |
-
with gr.Column():
|
| 205 |
-
|
| 206 |
-
with gr.Row():
|
| 207 |
-
with gr.Column():
|
| 208 |
-
image_pil = gr.Image(label="Style Image", type="numpy")
|
| 209 |
-
|
| 210 |
-
target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"],
|
| 211 |
-
value="Load only style blocks",
|
| 212 |
-
label="Style mode")
|
| 213 |
-
|
| 214 |
-
prompt = gr.Textbox(label="Prompt",
|
| 215 |
-
value="a cat, masterpiece, best quality, high quality")
|
| 216 |
-
|
| 217 |
-
scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale")
|
| 218 |
-
|
| 219 |
-
with gr.Accordion(open=False, label="Advanced Options"):
|
| 220 |
-
|
| 221 |
-
with gr.Column():
|
| 222 |
-
src_image_pil = gr.Image(label="Source Image (optional)", type='pil')
|
| 223 |
-
control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale")
|
| 224 |
-
|
| 225 |
-
n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
|
| 226 |
-
|
| 227 |
-
neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="")
|
| 228 |
-
neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale")
|
| 229 |
-
|
| 230 |
-
guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale")
|
| 231 |
-
num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples")
|
| 232 |
-
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps")
|
| 233 |
-
seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value")
|
| 234 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 235 |
-
|
| 236 |
-
generate_button = gr.Button("Generate Image")
|
| 237 |
-
|
| 238 |
-
with gr.Column():
|
| 239 |
-
generated_image = gr.Gallery(label="Generated Image")
|
| 240 |
-
|
| 241 |
-
generate_button.click(
|
| 242 |
-
fn=randomize_seed_fn,
|
| 243 |
-
inputs=[seed, randomize_seed],
|
| 244 |
-
outputs=seed,
|
| 245 |
-
queue=False,
|
| 246 |
-
api_name=False,
|
| 247 |
-
).then(
|
| 248 |
-
fn=create_image,
|
| 249 |
-
inputs=[image_pil,
|
| 250 |
-
src_image_pil,
|
| 251 |
-
prompt,
|
| 252 |
-
n_prompt,
|
| 253 |
-
scale,
|
| 254 |
-
control_scale,
|
| 255 |
-
guidance_scale,
|
| 256 |
-
num_samples,
|
| 257 |
-
num_inference_steps,
|
| 258 |
-
seed,
|
| 259 |
-
target,
|
| 260 |
-
neg_content_prompt,
|
| 261 |
-
neg_content_scale],
|
| 262 |
-
outputs=[generated_image])
|
| 263 |
-
|
| 264 |
-
gr.Markdown(article)
|
| 265 |
-
|
| 266 |
block.launch(show_error=True)
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.append('./')
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import cv2
|
| 7 |
+
import torch
|
| 8 |
+
import random
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
|
| 12 |
+
|
| 13 |
+
import spaces
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
|
| 17 |
+
from ip_adapter import IPAdapterXL
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
os.system("git lfs install")
|
| 21 |
+
os.system("git clone https://huggingface.co/h94/IP-Adapter")
|
| 22 |
+
os.system("mv IP-Adapter/sdxl_models sdxl_models")
|
| 23 |
+
|
| 24 |
+
# global variable
|
| 25 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
| 28 |
+
|
| 29 |
+
# initialization
|
| 30 |
+
base_model_path = "kandinsky-community/kandinsky-2-2-prior"
|
| 31 |
+
image_encoder_path = "sdxl_models/image_encoder"
|
| 32 |
+
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
|
| 33 |
+
|
| 34 |
+
controlnet_path = "kandinsky-community/kandinsky-2-2-controlnet-depth"
|
| 35 |
+
controlnet = KandinskyV22ControlnetPipeline.from_pretrained(controlnet_path, use_safetensors=False, torch_dtype=torch.float16).to(device)
|
| 36 |
+
|
| 37 |
+
# load SDXL pipeline
|
| 38 |
+
pipe = KandinskyV22PriorPipeline.from_pretrained(
|
| 39 |
+
base_model_path,
|
| 40 |
+
controlnet=controlnet,
|
| 41 |
+
torch_dtype=torch.float16,
|
| 42 |
+
add_watermarker=False,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# load ip-adapter
|
| 46 |
+
# target_blocks=["block"] for original IP-Adapter
|
| 47 |
+
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
| 48 |
+
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
|
| 49 |
+
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
|
| 50 |
+
|
| 51 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 52 |
+
if randomize_seed:
|
| 53 |
+
seed = random.randint(0, MAX_SEED)
|
| 54 |
+
return seed
|
| 55 |
+
|
| 56 |
+
def resize_img(
|
| 57 |
+
input_image,
|
| 58 |
+
max_side=1280,
|
| 59 |
+
min_side=1024,
|
| 60 |
+
size=None,
|
| 61 |
+
pad_to_max_side=False,
|
| 62 |
+
mode=Image.BILINEAR,
|
| 63 |
+
base_pixel_number=64,
|
| 64 |
+
):
|
| 65 |
+
w, h = input_image.size
|
| 66 |
+
if size is not None:
|
| 67 |
+
w_resize_new, h_resize_new = size
|
| 68 |
+
else:
|
| 69 |
+
ratio = min_side / min(h, w)
|
| 70 |
+
w, h = round(ratio * w), round(ratio * h)
|
| 71 |
+
ratio = max_side / max(h, w)
|
| 72 |
+
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
| 73 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
| 74 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
| 75 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
| 76 |
+
|
| 77 |
+
if pad_to_max_side:
|
| 78 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
| 79 |
+
offset_x = (max_side - w_resize_new) // 2
|
| 80 |
+
offset_y = (max_side - h_resize_new) // 2
|
| 81 |
+
res[
|
| 82 |
+
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
|
| 83 |
+
] = np.array(input_image)
|
| 84 |
+
input_image = Image.fromarray(res)
|
| 85 |
+
return input_image
|
| 86 |
+
|
| 87 |
+
@spaces.GPU(enable_queue=True)
|
| 88 |
+
def create_image(image_pil,
|
| 89 |
+
input_image,
|
| 90 |
+
prompt,
|
| 91 |
+
n_prompt,
|
| 92 |
+
scale,
|
| 93 |
+
control_scale,
|
| 94 |
+
guidance_scale,
|
| 95 |
+
num_samples,
|
| 96 |
+
num_inference_steps,
|
| 97 |
+
seed,
|
| 98 |
+
target="Load only style blocks",
|
| 99 |
+
neg_content_prompt=None,
|
| 100 |
+
neg_content_scale=0):
|
| 101 |
+
|
| 102 |
+
if isinstance(image_pil, np.ndarray):
|
| 103 |
+
image_pil = Image.fromarray(image_pil)
|
| 104 |
+
|
| 105 |
+
if target =="Load original IP-Adapter":
|
| 106 |
+
# target_blocks=["blocks"] for original IP-Adapter
|
| 107 |
+
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"])
|
| 108 |
+
elif target=="Load only style blocks":
|
| 109 |
+
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
| 110 |
+
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
|
| 111 |
+
elif target=="Load only layout blocks":
|
| 112 |
+
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
|
| 113 |
+
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["down_blocks.2.attentions.1"])
|
| 114 |
+
elif target == "Load style+layout block":
|
| 115 |
+
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
|
| 116 |
+
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"])
|
| 117 |
+
|
| 118 |
+
if input_image is not None:
|
| 119 |
+
input_image = resize_img(input_image, max_side=1024)
|
| 120 |
+
cv_input_image = pil_to_cv2(input_image)
|
| 121 |
+
detected_map = cv2.Canny(cv_input_image, 50, 200)
|
| 122 |
+
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
|
| 123 |
+
else:
|
| 124 |
+
canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255))
|
| 125 |
+
control_scale = 0
|
| 126 |
+
|
| 127 |
+
if float(control_scale) == 0:
|
| 128 |
+
canny_map = canny_map.resize((1024,1024))
|
| 129 |
+
|
| 130 |
+
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
|
| 131 |
+
images = ip_model.generate(pil_image=image_pil,
|
| 132 |
+
prompt=prompt,
|
| 133 |
+
negative_prompt=n_prompt,
|
| 134 |
+
scale=scale,
|
| 135 |
+
guidance_scale=guidance_scale,
|
| 136 |
+
num_samples=num_samples,
|
| 137 |
+
num_inference_steps=num_inference_steps,
|
| 138 |
+
seed=seed,
|
| 139 |
+
image=canny_map,
|
| 140 |
+
controlnet_conditioning_scale=float(control_scale),
|
| 141 |
+
neg_content_prompt=neg_content_prompt,
|
| 142 |
+
neg_content_scale=neg_content_scale
|
| 143 |
+
)
|
| 144 |
+
else:
|
| 145 |
+
images = ip_model.generate(pil_image=image_pil,
|
| 146 |
+
prompt=prompt,
|
| 147 |
+
negative_prompt=n_prompt,
|
| 148 |
+
scale=scale,
|
| 149 |
+
guidance_scale=guidance_scale,
|
| 150 |
+
num_samples=num_samples,
|
| 151 |
+
num_inference_steps=num_inference_steps,
|
| 152 |
+
seed=seed,
|
| 153 |
+
image=canny_map,
|
| 154 |
+
controlnet_conditioning_scale=float(control_scale),
|
| 155 |
+
)
|
| 156 |
+
return images
|
| 157 |
+
|
| 158 |
+
def pil_to_cv2(image_pil):
|
| 159 |
+
image_np = np.array(image_pil)
|
| 160 |
+
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 161 |
+
return image_cv2
|
| 162 |
+
|
| 163 |
+
# Description
|
| 164 |
+
title = r"""
|
| 165 |
+
<h1 align="center">InstantStyle</h1>
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
description = r"""
|
| 169 |
+
How to use:<br>
|
| 170 |
+
1. Upload a style image.
|
| 171 |
+
2. Set stylization mode, only use style block by default.
|
| 172 |
+
2. Enter a text prompt, as done in normal text-to-image models.
|
| 173 |
+
3. Click the <b>Submit</b> button to begin customization.
|
| 174 |
+
4. Share your stylized photo with your friends and enjoy! π
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
Advanced usage:<br>
|
| 178 |
+
1. Click advanced options.
|
| 179 |
+
2. Upload another source image for image-based stylization using ControlNet.
|
| 180 |
+
3. Enter negative content prompt to avoid content leakage.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
article = r"""
|
| 184 |
+
---
|
| 185 |
+
```bibtex
|
| 186 |
+
@article{wang2024instantstyle,
|
| 187 |
+
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
|
| 188 |
+
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
|
| 189 |
+
journal={arXiv preprint arXiv:2404.02733},
|
| 190 |
+
year={2024}
|
| 191 |
+
}
|
| 192 |
+
```
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
block = gr.Blocks().queue(max_size=10, api_open=True)
|
| 196 |
+
with block:
|
| 197 |
+
|
| 198 |
+
# description
|
| 199 |
+
gr.Markdown(title)
|
| 200 |
+
gr.Markdown(description)
|
| 201 |
+
|
| 202 |
+
with gr.Tabs():
|
| 203 |
+
with gr.Row():
|
| 204 |
+
with gr.Column():
|
| 205 |
+
|
| 206 |
+
with gr.Row():
|
| 207 |
+
with gr.Column():
|
| 208 |
+
image_pil = gr.Image(label="Style Image", type="numpy")
|
| 209 |
+
|
| 210 |
+
target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"],
|
| 211 |
+
value="Load only style blocks",
|
| 212 |
+
label="Style mode")
|
| 213 |
+
|
| 214 |
+
prompt = gr.Textbox(label="Prompt",
|
| 215 |
+
value="a cat, masterpiece, best quality, high quality")
|
| 216 |
+
|
| 217 |
+
scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale")
|
| 218 |
+
|
| 219 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
| 220 |
+
|
| 221 |
+
with gr.Column():
|
| 222 |
+
src_image_pil = gr.Image(label="Source Image (optional)", type='pil')
|
| 223 |
+
control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale")
|
| 224 |
+
|
| 225 |
+
n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
|
| 226 |
+
|
| 227 |
+
neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="")
|
| 228 |
+
neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale")
|
| 229 |
+
|
| 230 |
+
guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale")
|
| 231 |
+
num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples")
|
| 232 |
+
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps")
|
| 233 |
+
seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value")
|
| 234 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 235 |
+
|
| 236 |
+
generate_button = gr.Button("Generate Image")
|
| 237 |
+
|
| 238 |
+
with gr.Column():
|
| 239 |
+
generated_image = gr.Gallery(label="Generated Image")
|
| 240 |
+
|
| 241 |
+
generate_button.click(
|
| 242 |
+
fn=randomize_seed_fn,
|
| 243 |
+
inputs=[seed, randomize_seed],
|
| 244 |
+
outputs=seed,
|
| 245 |
+
queue=False,
|
| 246 |
+
api_name=False,
|
| 247 |
+
).then(
|
| 248 |
+
fn=create_image,
|
| 249 |
+
inputs=[image_pil,
|
| 250 |
+
src_image_pil,
|
| 251 |
+
prompt,
|
| 252 |
+
n_prompt,
|
| 253 |
+
scale,
|
| 254 |
+
control_scale,
|
| 255 |
+
guidance_scale,
|
| 256 |
+
num_samples,
|
| 257 |
+
num_inference_steps,
|
| 258 |
+
seed,
|
| 259 |
+
target,
|
| 260 |
+
neg_content_prompt,
|
| 261 |
+
neg_content_scale],
|
| 262 |
+
outputs=[generated_image])
|
| 263 |
+
|
| 264 |
+
gr.Markdown(article)
|
| 265 |
+
|
| 266 |
block.launch(show_error=True)
|