Hatman commited on
Commit
8d6f040
·
verified ·
1 Parent(s): 3e94094

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -13
app.py CHANGED
@@ -1,27 +1,22 @@
1
- import sys
2
- sys.path.append('./')
3
-
4
  import torch
5
  import random
6
  import spaces
7
  import gradio as gr
8
 
9
  from diffusers import AutoPipelineForText2Image
10
- from transformers import CLIPVisionModelWithProjection
11
  from diffusers.utils import load_image
12
- from torchvision import transforms
13
 
14
- device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
15
  dtype = torch.float16 if torch.cuda.is_available() else torch.float32
16
- pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to(device)
17
- pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
18
 
19
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
20
  if randomize_seed:
21
  seed = random.randint(0, 2000)
22
  return seed
23
 
24
- @spaces.GPU(enable_queue=True)
25
  def create_image(image_pil,
26
  prompt,
27
  n_prompt,
@@ -47,20 +42,19 @@ def create_image(image_pil,
47
  "down": {"block_2": [0.0, control_scale]},
48
  "up": {"block_0": [0.0, control_scale, 0.0]},
49
  }
50
- pipeline.set_ip_adapter_scale(scale)
51
 
52
  style_image = load_image(image_pil)
53
- generator = torch.Generator(device=device).manual_seed(randomize_seed_fn(seed, True))
54
 
55
 
56
- image = pipeline(
57
  prompt=prompt,
58
  ip_adapter_image=style_image,
59
  negative_prompt=n_prompt,
60
  guidance_scale=guidance_scale,
61
  num_inference_steps=num_inference_steps,
62
  generator=generator,
63
- device=device
64
  )
65
  return image
66
 
 
 
 
 
1
  import torch
2
  import random
3
  import spaces
4
  import gradio as gr
5
 
6
  from diffusers import AutoPipelineForText2Image
 
7
  from diffusers.utils import load_image
 
8
 
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
  dtype = torch.float16 if torch.cuda.is_available() else torch.float32
11
+ pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype).to("cuda")
12
+ pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
13
 
14
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
15
  if randomize_seed:
16
  seed = random.randint(0, 2000)
17
  return seed
18
 
19
+ @spaces.GPU()
20
  def create_image(image_pil,
21
  prompt,
22
  n_prompt,
 
42
  "down": {"block_2": [0.0, control_scale]},
43
  "up": {"block_0": [0.0, control_scale, 0.0]},
44
  }
45
+ pipe.set_ip_adapter_scale(scale)
46
 
47
  style_image = load_image(image_pil)
48
+ generator = torch.Generator().manual_seed(randomize_seed_fn(seed, True))
49
 
50
 
51
+ image = pipe(
52
  prompt=prompt,
53
  ip_adapter_image=style_image,
54
  negative_prompt=n_prompt,
55
  guidance_scale=guidance_scale,
56
  num_inference_steps=num_inference_steps,
57
  generator=generator,
 
58
  )
59
  return image
60