Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,22 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
sys.path.append('./')
|
| 3 |
-
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
import spaces
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
from diffusers import AutoPipelineForText2Image
|
| 10 |
-
from transformers import CLIPVisionModelWithProjection
|
| 11 |
from diffusers.utils import load_image
|
| 12 |
-
from torchvision import transforms
|
| 13 |
|
| 14 |
-
device =
|
| 15 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 20 |
if randomize_seed:
|
| 21 |
seed = random.randint(0, 2000)
|
| 22 |
return seed
|
| 23 |
|
| 24 |
-
@spaces.GPU(
|
| 25 |
def create_image(image_pil,
|
| 26 |
prompt,
|
| 27 |
n_prompt,
|
|
@@ -47,20 +42,19 @@ def create_image(image_pil,
|
|
| 47 |
"down": {"block_2": [0.0, control_scale]},
|
| 48 |
"up": {"block_0": [0.0, control_scale, 0.0]},
|
| 49 |
}
|
| 50 |
-
|
| 51 |
|
| 52 |
style_image = load_image(image_pil)
|
| 53 |
-
generator = torch.Generator(
|
| 54 |
|
| 55 |
|
| 56 |
-
image =
|
| 57 |
prompt=prompt,
|
| 58 |
ip_adapter_image=style_image,
|
| 59 |
negative_prompt=n_prompt,
|
| 60 |
guidance_scale=guidance_scale,
|
| 61 |
num_inference_steps=num_inference_steps,
|
| 62 |
generator=generator,
|
| 63 |
-
device=device
|
| 64 |
)
|
| 65 |
return image
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import random
|
| 3 |
import spaces
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
from diffusers import AutoPipelineForText2Image
|
|
|
|
| 7 |
from diffusers.utils import load_image
|
|
|
|
| 8 |
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 11 |
+
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype).to("cuda")
|
| 12 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
| 13 |
|
| 14 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 15 |
if randomize_seed:
|
| 16 |
seed = random.randint(0, 2000)
|
| 17 |
return seed
|
| 18 |
|
| 19 |
+
@spaces.GPU()
|
| 20 |
def create_image(image_pil,
|
| 21 |
prompt,
|
| 22 |
n_prompt,
|
|
|
|
| 42 |
"down": {"block_2": [0.0, control_scale]},
|
| 43 |
"up": {"block_0": [0.0, control_scale, 0.0]},
|
| 44 |
}
|
| 45 |
+
pipe.set_ip_adapter_scale(scale)
|
| 46 |
|
| 47 |
style_image = load_image(image_pil)
|
| 48 |
+
generator = torch.Generator().manual_seed(randomize_seed_fn(seed, True))
|
| 49 |
|
| 50 |
|
| 51 |
+
image = pipe(
|
| 52 |
prompt=prompt,
|
| 53 |
ip_adapter_image=style_image,
|
| 54 |
negative_prompt=n_prompt,
|
| 55 |
guidance_scale=guidance_scale,
|
| 56 |
num_inference_steps=num_inference_steps,
|
| 57 |
generator=generator,
|
|
|
|
| 58 |
)
|
| 59 |
return image
|
| 60 |
|