Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,16 +9,14 @@ import gradio as gr
|
|
9 |
from diffusers import AutoPipelineForText2Image
|
10 |
from diffusers.utils import load_image
|
11 |
|
12 |
-
# global variable
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
15 |
-
|
16 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
17 |
if randomize_seed:
|
18 |
seed = random.randint(0, 2000)
|
19 |
return seed
|
20 |
|
21 |
-
|
|
|
|
|
22 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
23 |
|
24 |
@spaces.GPU()
|
@@ -54,7 +52,7 @@ def create_image(image_pil,
|
|
54 |
|
55 |
style_image = load_image(image_pil)
|
56 |
|
57 |
-
generator = torch.Generator(
|
58 |
image = pipeline(
|
59 |
prompt=prompt,
|
60 |
ip_adapter_image=style_image,
|
|
|
9 |
from diffusers import AutoPipelineForText2Image
|
10 |
from diffusers.utils import load_image
|
11 |
|
|
|
|
|
|
|
|
|
12 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
13 |
if randomize_seed:
|
14 |
seed = random.randint(0, 2000)
|
15 |
return seed
|
16 |
|
17 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
18 |
+
torch.cuda.set_device(device)
|
19 |
+
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to(device)
|
20 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
21 |
|
22 |
@spaces.GPU()
|
|
|
52 |
|
53 |
style_image = load_image(image_pil)
|
54 |
|
55 |
+
generator = torch.Generator().manual_seed(randomize_seed_fn(seed, False))
|
56 |
image = pipeline(
|
57 |
prompt=prompt,
|
58 |
ip_adapter_image=style_image,
|