Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,30 +13,8 @@ from torchvision import transforms
|
|
13 |
|
14 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
15 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
-
|
17 |
-
|
18 |
-
subfolder="models/image_encoder",
|
19 |
-
torch_dtype=dtype
|
20 |
-
)
|
21 |
-
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",image_encoder=image_encoder, torch_dtype=dtype).to(device)
|
22 |
-
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors")
|
23 |
-
|
24 |
-
def prepare_image(image_path_or_url):
|
25 |
-
# Load the image
|
26 |
-
image = load_image(image_path_or_url)
|
27 |
-
|
28 |
-
# Convert to tensor and move to correct device and dtype
|
29 |
-
transform = transforms.Compose([
|
30 |
-
transforms.ToTensor(),
|
31 |
-
transforms.Resize((1024, 1024), interpolation=transforms.InterpolationMode.BICUBIC)
|
32 |
-
])
|
33 |
-
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
|
34 |
-
return image_tensor.to(device=device, dtype=dtype)
|
35 |
-
|
36 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
37 |
-
if randomize_seed:
|
38 |
-
seed = random.randint(0, 2000)
|
39 |
-
return seed
|
40 |
|
41 |
@spaces.GPU(enable_queue=True)
|
42 |
def create_image(image_pil,
|
@@ -65,7 +43,7 @@ def create_image(image_pil,
|
|
65 |
}
|
66 |
pipeline.set_ip_adapter_scale(scale)
|
67 |
|
68 |
-
style_image =
|
69 |
generator = torch.Generator(device=device).manual_seed(randomize_seed_fn(seed, False))
|
70 |
|
71 |
image = pipeline(
|
|
|
13 |
|
14 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
15 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
+
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype).to(device)
|
17 |
+
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
@spaces.GPU(enable_queue=True)
|
20 |
def create_image(image_pil,
|
|
|
43 |
}
|
44 |
pipeline.set_ip_adapter_scale(scale)
|
45 |
|
46 |
+
style_image = load_image(image_pil)
|
47 |
generator = torch.Generator(device=device).manual_seed(randomize_seed_fn(seed, False))
|
48 |
|
49 |
image = pipeline(
|