Spaces:
Running
on
Zero
Running
on
Zero
hatmanstack
commited on
Commit
·
408db9c
1
Parent(s):
228ed52
stability-ai 3.5
Browse files
app.py
CHANGED
|
@@ -1,22 +1,41 @@
|
|
| 1 |
import torch
|
| 2 |
import random
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
-
from
|
| 6 |
-
from
|
|
|
|
| 7 |
import gc
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
pipe.to(device)
|
|
|
|
| 14 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 15 |
if randomize_seed:
|
| 16 |
seed = random.randint(0, 2000)
|
| 17 |
return seed
|
| 18 |
-
|
| 19 |
-
|
| 20 |
def create_image(image_pil,
|
| 21 |
prompt,
|
| 22 |
n_prompt,
|
|
@@ -44,18 +63,20 @@ def create_image(image_pil,
|
|
| 44 |
}
|
| 45 |
pipe.set_ip_adapter_scale(scale)
|
| 46 |
|
| 47 |
-
style_image =
|
| 48 |
-
generator = torch.Generator(device="cpu").manual_seed(randomize_seed_fn(seed, True)) ## For ZeroGPU no device="cpu"
|
| 49 |
|
| 50 |
|
| 51 |
image = pipe(
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
if torch.cuda.is_available():
|
| 61 |
torch.cuda.empty_cache()
|
|
@@ -87,7 +108,6 @@ article = r"""
|
|
| 87 |
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
|
| 88 |
journal={arXiv preprint arXiv:2404.02733},
|
| 89 |
year={2024}
|
| 90 |
-
}
|
| 91 |
```
|
| 92 |
"""
|
| 93 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import random
|
| 3 |
+
import spaces ## For ZeroGPU
|
| 4 |
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from models.transformer_sd3 import SD3Transformer2DModel
|
| 7 |
+
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 8 |
import gc
|
| 9 |
|
| 10 |
+
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
| 11 |
+
ip_adapter_path = './ip-adapter.bin'
|
| 12 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 13 |
+
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 16 |
+
|
| 17 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
| 18 |
+
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 22 |
+
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
| 23 |
+
) ## For ZeroGPU no .to("cuda")
|
| 24 |
+
|
| 25 |
+
pipe.init_ipadapter(
|
| 26 |
+
ip_adapter_path=ip_adapter_path,
|
| 27 |
+
image_encoder_path=image_encoder_path,
|
| 28 |
+
nb_token=64,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
pipe.to(device)
|
| 32 |
+
|
| 33 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 34 |
if randomize_seed:
|
| 35 |
seed = random.randint(0, 2000)
|
| 36 |
return seed
|
| 37 |
+
|
| 38 |
+
@spaces.GPU() ## For ZeroGPU
|
| 39 |
def create_image(image_pil,
|
| 40 |
prompt,
|
| 41 |
n_prompt,
|
|
|
|
| 63 |
}
|
| 64 |
pipe.set_ip_adapter_scale(scale)
|
| 65 |
|
| 66 |
+
style_image = Image.open(image_pil).convert('RGB')
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
image = pipe(
|
| 70 |
+
width=1024,
|
| 71 |
+
height=1024,
|
| 72 |
+
prompt=prompt,
|
| 73 |
+
negative_prompt="lowres, low quality, worst quality",
|
| 74 |
+
num_inference_steps=24,
|
| 75 |
+
guidance_scale=guidance_scale,
|
| 76 |
+
generator=torch.Generator("cuda").manual_seed(randomize_seed_fn(seed, True)), ## For ZeroGPU no device="cpu"
|
| 77 |
+
clip_image=style_image,
|
| 78 |
+
ipadapter_scale=scale,
|
| 79 |
+
).images[0]
|
| 80 |
|
| 81 |
if torch.cuda.is_available():
|
| 82 |
torch.cuda.empty_cache()
|
|
|
|
| 108 |
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
|
| 109 |
journal={arXiv preprint arXiv:2404.02733},
|
| 110 |
year={2024}
|
|
|
|
| 111 |
```
|
| 112 |
"""
|
| 113 |
|