Hatman commited on
Commit
1c167bd
·
verified ·
1 Parent(s): a1ad152

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -13,9 +13,11 @@ from torchvision import transforms
13
 
14
  device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
15
  dtype = torch.float16 if torch.cuda.is_available() else torch.float32
16
- pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to('cuda:0')
17
  pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
18
 
 
 
19
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
20
  if randomize_seed:
21
  seed = random.randint(0, 2000)
@@ -32,6 +34,7 @@ def create_image(image_pil,
32
  seed,
33
  target="Load only style blocks",
34
  ):
 
35
  if target !="Load original IP-Adapter":
36
  if target=="Load only style blocks":
37
  scale = {
@@ -49,8 +52,9 @@ def create_image(image_pil,
49
  pipeline.set_ip_adapter_scale(scale)
50
 
51
  style_image = load_image(image_pil)
52
- generator = torch.Generator(device='cuda:0').manual_seed(randomize_seed_fn(seed, True))
53
  torch.cuda.set_device(device)
 
54
  image = pipeline(
55
  prompt=prompt,
56
  ip_adapter_image=style_image,
@@ -58,7 +62,7 @@ def create_image(image_pil,
58
  guidance_scale=guidance_scale,
59
  num_inference_steps=num_inference_steps,
60
  generator=generator,
61
- device='cuda:0'
62
  )
63
  return image
64
 
 
13
 
14
  device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
15
  dtype = torch.float16 if torch.cuda.is_available() else torch.float32
16
+ pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to(device)
17
  pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
18
 
19
+ print(device)
20
+
21
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
22
  if randomize_seed:
23
  seed = random.randint(0, 2000)
 
34
  seed,
35
  target="Load only style blocks",
36
  ):
37
+ print(device)
38
  if target !="Load original IP-Adapter":
39
  if target=="Load only style blocks":
40
  scale = {
 
52
  pipeline.set_ip_adapter_scale(scale)
53
 
54
  style_image = load_image(image_pil)
55
+ generator = torch.Generator(device=device).manual_seed(randomize_seed_fn(seed, True))
56
  torch.cuda.set_device(device)
57
+ print(device)
58
  image = pipeline(
59
  prompt=prompt,
60
  ip_adapter_image=style_image,
 
62
  guidance_scale=guidance_scale,
63
  num_inference_steps=num_inference_steps,
64
  generator=generator,
65
+ device=device
66
  )
67
  return image
68