Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
#import librosa | |
#import numpy as np | |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
model_name = "Hemg/human-emotion-detection" | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name).to(device) | |
def preprocess_audio(audio): | |
#audio_array, sampling_rate = librosa.load(audio, sr=16000) # Load and resample to 16kHz | |
#return {'speech': audio_array, 'sampling_rate': sampling_rate} | |
def inference(audio): | |
print('hello') | |
''' | |
example = preprocess_audio(audio) | |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True) | |
inputs = inputs.to(device) # Move inputs to GPU | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
return model.config.id2label[predicted_ids.item()], logits, predicted_ids # Move tensors back to CPU for further processing | |
''' | |
iface = gr.Interface(fn=inference, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Label(label="Predicted Sentiment"), | |
gr.JSON(label="Logits"), | |
gr.JSON(label="Predicted ID")], | |
title="Audio Sentiment Analysis", | |
description="Upload an audio file or record one to analyze sentiment.") | |
iface.launch(share=True) |