Spaces:
Running
Running
File size: 10,867 Bytes
cd11bb9 552a8f8 cd11bb9 552a8f8 cd11bb9 552a8f8 cd11bb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import json
import io
import random
import gradio as gr
from PIL import Image
from generate import *
import numpy as np
from typing import Dict, Any
from processImage import process_and_encode_image
def rgba_to_hex(rgba):
r, g, b, _ = [int(float(x)) for x in rgba[5:-1].split(',')]
return f"#{r:02X}{g:02X}{b:02X}"
def add_color_to_list(current_colors, new_color):
new_color_hex = rgba_to_hex(new_color)
color_list = current_colors.split(',')
if new_color_hex not in color_list and len(color_list) < 10:
color_list.append(new_color_hex)
return ','.join(filter(None, color_list))
def create_padded_image(image, padding_percent=100):
image = image['background']
if image.mode != 'RGBA':
image = image.convert('RGBA')
width, height = image.size
new_width = int(width * (1 + padding_percent/100))
new_height = int(height * (1 + padding_percent/100))
padded = Image.new('RGBA', (new_width, new_height), (0, 0, 0, 0))
x_offset = (new_width - width) // 2
y_offset = (new_height - height) // 2
padded.paste(image, (x_offset, y_offset))
return padded
def process_composite_to_mask(original_image, composite_image, transparent=False):
original_array = np.array(original_image.convert('RGBA'))
if transparent:
black_background = Image.new('RGBA', original_image.size, (0, 0, 0, 255))
black_background.paste(original_image, (0, 0), original_image)
return black_background
if composite_image is None:
mask = np.full(original_array.shape[:2], 0, dtype=np.uint8)
transparent_areas = original_array[:, :, 3] == 0
mask[transparent_areas] = 255
else:
composite_array = np.array(composite_image.convert('RGBA'))
difference = np.any(original_array != composite_array, axis=2)
mask = np.full(original_array.shape[:2], 255, dtype=np.uint8)
mask[difference] = 0
return Image.fromarray(mask, mode='L')
def build_request(task_type, params, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
param_dict = {
"TEXT_IMAGE": "textToImageParams",
"INPAINTING": "inPaintingParams",
"OUTPAINTING": "outPaintingParams",
"IMAGE_VARIATION": "imageVariationParams",
"COLOR_GUIDED_GENERATION": "colorGuidedGenerationParams",
"BACKGROUND_REMOVAL": "backgroundRemovalParams"
}
return json.dumps({
"taskType": task_type,
param_dict[task_type]: params,
"imageGenerationConfig": {
"numberOfImages": 1,
"height": height,
"width": width,
"quality": quality,
"cfgScale": cfg_scale,
"seed": seed
}
})
def check_return(result):
if not isinstance(result, bytes):
return None, gr.update(visible=True, value=result)
return Image.open(io.BytesIO(result)), gr.update(value=None,visible=False)
def text_to_image(prompt, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
text_to_image_params = {"text": prompt,
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def inpainting(mask_image, mask_prompt=None, text=None, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
image = process_and_encode_image(mask_image['background'])
if len(image) < 200:
return None, gr.update(visible=True, value=image)
if mask_prompt and mask_image:
raise ValueError("You must specify either maskPrompt or maskImage, but not both.")
if not mask_prompt and not mask_image:
raise ValueError("You must specify either maskPrompt or maskImage.")
if mask_image and 'composite' in mask_image:
mask = process_composite_to_mask(mask_image['background'], mask_image['composite'])
mask_image = process_and_encode_image(mask)
in_painting_params = {
"image": image,
**({"maskImage": mask_image} if mask_image not in [None, ""] else {}),
**({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}),
**({"text": text} if text not in [None, ""] else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("INPAINTING", in_painting_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def outpainting(mask_image, mask_prompt=None, text=None, negative_text=None, outpainting_mode="DEFAULT", height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
image = process_and_encode_image(mask_image['background'])
if len(image) < 200:
print(image)
return None, gr.update(visible=True, value=image)
if mask_prompt and mask_image:
raise ValueError("You must specify either maskPrompt or maskImage, but not both.")
if not mask_prompt and not mask_image:
raise ValueError("You must specify either maskPrompt or maskImage.")
if mask_image and 'composite' in mask_image:
mask = process_composite_to_mask(mask_image['background'], None)
image = process_composite_to_mask(mask_image['background'], None, True)
image = process_and_encode_image(image)
mask_image = process_and_encode_image(mask)
out_painting_params = {
"image": image,
"outPaintingMode": outpainting_mode,
**({"maskImage": mask_image} if mask_image not in [None, ""] else {}),
**({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}),
**({"text": text} if text not in [None, ""] else {"text": " "}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("OUTPAINTING", out_painting_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def image_variation(images, text=None, negative_text=None, similarity_strength=0.5, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
encoded_images = []
for image_path in images:
with open(image_path, "rb") as image_file:
value = process_and_encode_image(image_file)
if len(value) < 200:
return None, gr.update(visible=True, value=value)
encoded_images.append(value)
image_variation_params = {
"images": encoded_images,
**({"similarityStrength": similarity_strength} if similarity_strength not in [None, ""] else {}),
**({"text": text} if text not in [None, ""] else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("IMAGE_VARIATION", image_variation_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def image_conditioning(condition_image, text, negative_text=None, control_mode="CANNY_EDGE", control_strength=0.7, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
condition_image_encoded = process_and_encode_image(condition_image)
if len(condition_image_encoded) < 200:
return None, gr.update(visible=True, value=condition_image_encoded)
text_to_image_params = {
"text": text,
"controlMode": control_mode,
"controlStrength": control_strength,
"conditionImage": condition_image_encoded,
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def color_guided_content(text=None, reference_image=None, negative_text=None, colors=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
reference_image_str = None
if reference_image is not None and not isinstance(reference_image, type(None)):
reference_image_encoded = process_and_encode_image(reference_image)
if len(reference_image_encoded) < 200:
return None, gr.update(visible=True, value=reference_image_encoded)
if not colors:
colors = "#FF5733,#33FF57,#3357FF,#FF33A1,#33FFF5,#FF8C33,#8C33FF,#33FF8C,#FF3333,#33A1FF"
color_guided_generation_params = {
"text": text,
"colors": [color.strip() for color in colors.split(',')],
**({"referenceImage": reference_image_encoded} if reference_image_str is not None else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("COLOR_GUIDED_GENERATION", color_guided_generation_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def background_removal(image):
input_image = process_and_encode_image(image)
if len(input_image) < 200:
return None, gr.update(visible=True, value=input_image)
body = json.dumps({
"taskType": "BACKGROUND_REMOVAL",
"backgroundRemovalParams": {
"image": input_image
}
})
result = generate_image(body)
return check_return(result)
def generate_nova_prompt():
with open('seeds.json', 'r') as file:
data = json.load(file)
if 'seeds' not in data or not isinstance(data['seeds'], list):
raise ValueError("The JSON file must contain a 'seeds' key with a list of strings.")
random_string = random.choice(data['seeds'])
prompt = f"""
Generate a creative image prompt that builds upon this concept: "{random_string}"
Requirements:
- Create a new, expanded prompt without mentioning or repeating the original concept
- Focus on vivid visual details and artistic elements
- Keep the prompt under 1000 characters
- Do not include any meta-instructions or seed references
- Return only the new prompt text
Response Format:
[Just the new prompt text, nothing else]
"""
messages = [
{"role": "user", "content": [{"text": prompt}]}
]
return generate_prompt(messages)
|