Spaces:
Running
Running
File size: 9,708 Bytes
ab6cb7b 911f98c ab6cb7b 059f429 ab6cb7b 911f98c ab6cb7b 059f429 ab6cb7b 059f429 ab6cb7b 4cacb08 911f98c 059f429 ab6cb7b 059f429 ab6cb7b 911f98c 059f429 ab6cb7b 059f429 ab6cb7b 059f429 ab6cb7b 059f429 ab6cb7b 911f98c 059f429 ab6cb7b 059f429 ab6cb7b 059f429 ab6cb7b a967c34 ab6cb7b a967c34 ab6cb7b 059f429 ab6cb7b 059f429 911f98c 059f429 911f98c ab6cb7b 059f429 ab6cb7b 059f429 ab6cb7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import json
import io
import random
import gradio as gr
from PIL import Image
from generate import *
from typing import Dict, Any
from processImage import process_and_encode_image
def display_image(image_bytes):
if isinstance(image_bytes, str):
# If we received a string (error message), return it to be displayed
return None, gr.update(visible=True, value=image_bytes)
elif image_bytes:
# If we received image bytes, process and display the image
return Image.open(io.BytesIO(image_bytes)), gr.update(visible=False)
else:
# Handle None case
return None, gr.update(visible=False)
def process_optional_params(**kwargs) -> Dict[str, Any]:
return {k: v for k, v in kwargs.items() if v is not None}
def process_images(primary=None, secondary=None, validate=True) -> Dict[str, str]:
if validate and primary is None:
raise ValueError("Primary image is required.")
result = {}
if primary:
result["image"] = process_and_encode_image(primary)
if secondary:
result["maskImage"] = process_and_encode_image(secondary)
return result
def create_image_generation_config(height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
return {
"numberOfImages": 1,
"height": height,
"width": width,
"quality": quality,
"cfgScale": cfg_scale,
"seed": seed
}
def build_request(task_type, params, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
param_dict = {"TEXT_IMAGE": "textToImageParams", "INPAINTING": "inPaintingParams",
"OUTPAINTING":"outPaintingParams","IMAGE_VARIATION":"imageVariationParams",
"COLOR_GUIDED_GENERATION":"colorGuidedGenerationParams","BACKGROUND_REMOVAL":"backgroundRemovalParams"}
return json.dumps({
"taskType": task_type,
param_dict[task_type]: params,
"imageGenerationConfig": create_image_generation_config(
height=height,
width=width,
quality=quality,
cfg_scale=cfg_scale,
seed=seed
)
})
def check_return(result):
if not isinstance(result, bytes):
return None, gr.update(visible=True, value=result)
return Image.open(io.BytesIO(result)), gr.update(visible=False)
def text_to_image(prompt, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
text_to_image_params = {"text": prompt,
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def inpainting(image, mask_prompt=None, mask_image=None, text=None, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
images = process_images(primary=image, secondary=None)
for value in images.values():
if len(value) < 200:
return None, gr.update(visible=True, value=value)
# Prepare the inPaintingParams dictionary
if mask_prompt and mask_image:
raise ValueError("You must specify either maskPrompt or maskImage, but not both.")
if not mask_prompt and not mask_image:
raise ValueError("You must specify either maskPrompt or maskImage.")
# Prepare the inPaintingParams dictionary with the appropriate mask parameter
in_painting_params = {
**images, # Unpacks image and maskImage if present
**({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}),
**({"text": text} if text not in [None, ""] else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("INPAINTING", in_painting_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def outpainting(image, mask_prompt=None, mask_image=None, text=None, negative_text=None, outpainting_mode="DEFAULT", height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
images = process_images(primary=image, secondary=None)
for value in images.values():
if len(value) < 200:
return None, gr.update(visible=True, value=value)
if mask_prompt and mask_image:
raise ValueError("You must specify either maskPrompt or maskImage, but not both.")
if not mask_prompt and not mask_image:
raise ValueError("You must specify either maskPrompt or maskImage.")
# Prepare the outPaintingParams dictionary
out_painting_params = {
**images, # Unpacks image and maskImage if present
**process_optional_params(
**({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}),
**({"text": text} if text not in [None, ""] else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
)
}
body = build_request("OUTPAINTING", out_painting_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def image_variation(images, text=None, negative_text=None, similarity_strength=0.5, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
encoded_images = []
for image_path in images:
with open(image_path, "rb") as image_file:
value = process_and_encode_image(image_file)
if len(value) < 200:
return None, gr.update(visible=True, value=value)
encoded_images.append(value)
# Prepare the imageVariationParams dictionary
image_variation_params = {
"images": encoded_images,
**({"text": text} if text not in [None, ""] else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("IMAGE_VARIATION", image_variation_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def image_conditioning(condition_image, text, negative_text=None, control_mode="CANNY_EDGE", control_strength=0.7, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
condition_image_encoded = process_images(primary=condition_image)
for value in condition_image_encoded.values():
if len(value) < 200:
return None, gr.update(visible=True, value=value)
# Prepare the textToImageParams dictionary
text_to_image_params = {
"text": text,
"controlMode": control_mode,
"controlStrength": control_strength,
"conditionImage": condition_image_encoded.get('image'),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def color_guided_content(text=None, reference_image=None, negative_text=None, colors=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
reference_image_str = None
if reference_image is not None and not isinstance(reference_image, type(None)):
reference_image_encoded = process_images(primary=reference_image)
for value in reference_image_encoded.values():
if len(value) < 200:
return None, gr.update(visible=True, value=value)
reference_image_str = reference_image_encoded.get('image')
if not colors:
colors = "#FF5733,#33FF57,#3357FF,#FF33A1,#33FFF5,#FF8C33,#8C33FF,#33FF8C,#FF3333,#33A1FF"
color_guided_generation_params = {
"text": text,
"colors": colors.split(','),
**({"referenceImage": reference_image_str} if reference_image_str is not None else {}),
**({"negativeText": negative_text} if negative_text not in [None, ""] else {})
}
body = build_request("COLOR_GUIDED_GENERATION", color_guided_generation_params, height, width, quality, cfg_scale, seed)
result = generate_image(body)
return check_return(result)
def background_removal(image):
input_image = process_images(primary=image)
for value in input_image.values():
if len(value) < 200:
return None, gr.update(visible=True, value=value)
body = json.dumps({
"taskType": "BACKGROUND_REMOVAL",
"backgroundRemovalParams": {
"image": input_image.get('image')
}
})
result = generate_image(body)
return check_return(result)
def generate_nova_prompt():
with open('seeds.json', 'r') as file:
data = json.load(file)
if 'seeds' not in data or not isinstance(data['seeds'], list):
raise ValueError("The JSON file must contain a 'seeds' key with a list of strings.")
random_string = random.choice(data['seeds'])
prompt = f"""
Generate a creative image prompt that builds upon this concept: "{random_string}"
Requirements:
- Create a new, expanded prompt without mentioning or repeating the original concept
- Focus on vivid visual details and artistic elements
- Keep the prompt under 1000 characters
- Do not include any meta-instructions or seed references
- Return only the new prompt text
Response Format:
[Just the new prompt text, nothing else]
"""
messages = [
{"role": "user", "content": [{"text": prompt}]}
]
return generate_prompt(messages)
|