File size: 7,826 Bytes
ab6cb7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import io
import random
from PIL import Image
from generate import *
from typing import Dict, Any

def display_image(image_bytes):
    image = Image.open(io.BytesIO(image_bytes))
    return image

def process_optional_params(**kwargs) -> Dict[str, Any]:
    return {k: v for k, v in kwargs.items() if v is not None}

def process_images(primary=None, secondary=None, validate=True) -> Dict[str, str]:
    if validate and primary is None:
        raise ValueError("Primary image is required.")
    result = {}
    if primary:
        result["image"] = process_and_encode_image(primary)
    if secondary:
        result["maskImage"] = process_and_encode_image(secondary)
    return result

def create_image_generation_config(height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    return {
        "numberOfImages": 1,
        "height": height,
        "width": width,
        "quality": quality,
        "cfgScale": cfg_scale,
        "seed": seed
    }

def build_request(task_type, params, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    param_dict = {"TEXT_IMAGE": "textToImageParams", "INPAINTING": "inPaintingParams", 
                  "OUTPAINTING":"outPaintingParams","IMAGE_VARIATION":"imageVariationParams",
                  "COLOR_GUIDED_GENERATION":"colorGuidedGenerationParams","BACKGROUND_REMOVAL":"backgroundRemovalParams"}
    return json.dumps({
        "taskType": task_type,
        param_dict[task_type]: params,
        "imageGenerationConfig": create_image_generation_config(
            height=height,
            width=width,
            quality=quality,
            cfg_scale=cfg_scale,
            seed=seed
        )
    })


def text_to_image(prompt, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    text_to_image_params = {"text": prompt,
                            **({"negativeText": negative_text} if negative_text not in [None, ""] else {})
                            }
    
    body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed)
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def inpainting(image, mask_prompt=None, mask_image=None, text=None, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    images = process_images(primary=image, secondary=None)

    # Prepare the inPaintingParams dictionary
    if mask_prompt and mask_image:
        raise ValueError("You must specify either maskPrompt or maskImage, but not both.")
    if not mask_prompt and not mask_image:
        raise ValueError("You must specify either maskPrompt or maskImage.")

    # Prepare the inPaintingParams dictionary with the appropriate mask parameter
    in_painting_params = {
        **images,  # Unpacks image and maskImage if present
        **({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}),
        **({"text": text} if text not in [None, ""] else {}),
        **({"negativeText": negative_text} if negative_text not in [None, ""] else {})
    }

    body = build_request("INPAINTING", in_painting_params, height, width, quality, cfg_scale, seed)
    return display_image(generate_image(body))

def outpainting(image, mask_prompt=None, mask_image=None, text=None, negative_text=None, outpainting_mode="DEFAULT", height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    images = process_images(primary=image, secondary=None)

    if mask_prompt and mask_image:
        raise ValueError("You must specify either maskPrompt or maskImage, but not both.")
    if not mask_prompt and not mask_image:
        raise ValueError("You must specify either maskPrompt or maskImage.")

    # Prepare the outPaintingParams dictionary
    out_painting_params = {
        **images,  # Unpacks image and maskImage if present
        **process_optional_params(
            **({"maskPrompt": mask_prompt} if mask_prompt  not in [None, ""] else {}),
            **({"text": text} if text  not in [None, ""] else {}),
            **({"negativeText": negative_text} if negative_text not in [None, ""] else {})
        )
    }

    body = build_request("OUTPAINTING", out_painting_params, height, width, quality, cfg_scale, seed)
    return display_image(generate_image(body))

def image_variation(images, text=None, negative_text=None, similarity_strength=0.5, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    encoded_images = []
    for image_path in images:
        with open(image_path, "rb") as image_file:
            encoded_images.append(process_and_encode_image(image_file))

    # Prepare the imageVariationParams dictionary
    image_variation_params = {
        "images": encoded_images,
        **({"text": text} if text not in [None, ""] else {}),
        **({"negativeText": negative_text} if negative_text not in [None, ""] else {})
    }

    body = build_request("IMAGE_VARIATION", image_variation_params, height, width, quality, cfg_scale, seed)
    return display_image(generate_image(body))

def image_conditioning(condition_image, text, negative_text=None, control_mode="CANNY_EDGE", control_strength=0.7, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    condition_image_encoded = process_images(primary=condition_image)
    # Prepare the textToImageParams dictionary
    text_to_image_params = {
        "text": text,
        "controlMode": control_mode,
        "controlStrength": control_strength,
        **condition_image_encoded,
        **({"negativeText": negative_text} if negative_text not in [None, ""] else {})
    }
    body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed)
    return display_image(generate_image(body))

def color_guided_content(text=None, reference_image=None, negative_text=None, colors=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0):
    # Encode the reference image if provided
    reference_image_encoded = process_images(primary=reference_image)
    if not colors:
        colors = "#FF5733,#33FF57,#3357FF,#FF33A1,#33FFF5,#FF8C33,#8C33FF,#33FF8C,#FF3333,#33A1FF"
    
    color_guided_generation_params = {
        "text": text,
        "colors": colors.split(','),
        **reference_image_encoded,
        **({"negativeText": negative_text} if negative_text not in [None, ""] else {})
    }

    body = build_request("COLOR_GUIDED_GENERATION", color_guided_generation_params, height, width, quality, cfg_scale, seed)
    return display_image(generate_image(body))

def background_removal(image):
    input_image = process_and_encode_image(image)
    body = json.dumps({
        "taskType": "BACKGROUND_REMOVAL",
        "backgroundRemovalParams": {"image": input_image}
    })
    return display_image(generate_image(body))

def generate_nova_prompt():
    
    with open('seeds.json', 'r') as file:
        data = json.load(file)
    if 'seeds' not in data or not isinstance(data['seeds'], list):
        raise ValueError("The JSON file must contain a 'seeds' key with a list of strings.")
    
    random_string = random.choice(data['seeds'])
    prompt = f"""
        Generate a creative image prompt that builds upon this concept: "{random_string}"

        Requirements:
        - Create a new, expanded prompt without mentioning or repeating the original concept
        - Focus on vivid visual details and artistic elements
        - Keep the prompt under 1000 characters
        - Do not include any meta-instructions or seed references
        - Return only the new prompt text

        Response Format:
        [Just the new prompt text, nothing else]
        """
    messages = [
        {"role": "user", "content": [{"text": prompt}]}
    ]
    
    return generate_prompt(messages)