File size: 7,471 Bytes
76f94b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import base64
import io
import json
import logging
import boto3
from PIL import Image
import gradio as gr

# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

# Custom exception for image errors
class ImageError(Exception):
    def __init__(self, message):
        self.message = message

model_id = 'amazon.nova-canvas-v1:0'
# Function to generate an image using Amazon Nova Canvas model
def generate_image(body):
    logger.info("Generating image with Amazon Nova Canvas model %s", model_id)
    session = boto3.Session(aws_access_key_id=aws_id, aws_secret_access_key=aws_secret, region_name='us-east-1')
    bedrock = session.client('bedrock-runtime')
    accept = "application/json"
    content_type = "application/json"

    response = bedrock.invoke_model(body=body, modelId=model_id, accept=accept, contentType=content_type)
    response_body = json.loads(response.get("body").read())

    base64_image = response_body.get("images")[0]
    base64_bytes = base64_image.encode('ascii')
    image_bytes = base64.b64decode(base64_bytes)

    finish_reason = response_body.get("error")
    if finish_reason is not None:
        raise ImageError(f"Image generation error. Error is {finish_reason}")

    logger.info("Successfully generated image with Amazon Nova Canvas model %s", model_id)
    return image_bytes

# Function to display image from bytes
def display_image(image_bytes):
    image = Image.open(io.BytesIO(image_bytes))
    return image

# Gradio functions for each task
def text_to_image(prompt):
    body = json.dumps({
        "taskType": "TEXT_IMAGE",
        "textToImageParams": {"text": prompt},
        "imageGenerationConfig": {"numberOfImages": 1, "height": 1024, "width": 1024, "cfgScale": 8.0, "seed": 0}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def inpainting(image, mask_prompt):
    input_image = base64.b64encode(image.read()).decode('utf8')
    body = json.dumps({
        "taskType": "INPAINTING",
        "inPaintingParams": {"text": mask_prompt, "image": input_image, "maskPrompt": "windows"},
        "imageGenerationConfig": {"numberOfImages": 1, "height": 512, "width": 512, "cfgScale": 8.0}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def outpainting(image, mask_image, text):
    input_image = base64.b64encode(image.read()).decode('utf8')
    input_mask_image = base64.b64encode(mask_image.read()).decode('utf8')
    body = json.dumps({
        "taskType": "OUTPAINTING",
        "outPaintingParams": {"text": text, "image": input_image, "maskImage": input_mask_image, "outPaintingMode": "DEFAULT"},
        "imageGenerationConfig": {"numberOfImages": 1, "height": 512, "width": 512, "cfgScale": 8.0}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def image_variation(image, text):
    input_image = base64.b64encode(image.read()).decode('utf8')
    body = json.dumps({
        "taskType": "IMAGE_VARIATION",
        "imageVariationParams": {"text": text, "images": [input_image], "similarityStrength": 0.7},
        "imageGenerationConfig": {"numberOfImages": 1, "height": 512, "width": 512, "cfgScale": 8.0}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def image_conditioning(image, text):
    input_image = base64.b64encode(image.read()).decode('utf8')
    body = json.dumps({
        "taskType": "TEXT_IMAGE",
        "textToImageParams": {"text": text, "conditionImage": input_image, "controlMode": "CANNY_EDGE"},
        "imageGenerationConfig": {"numberOfImages": 1, "height": 512, "width": 512, "cfgScale": 8.0}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def color_guided_content(image, text, colors):
    input_image = base64.b64encode(image.read()).decode('utf8')
    body = json.dumps({
        "taskType": "COLOR_GUIDED_GENERATION",
        "colorGuidedGenerationParams": {"text": text, "referenceImage": input_image, "colors": colors},
        "imageGenerationConfig": {"numberOfImages": 1, "height": 512, "width": 512, "cfgScale": 8.0}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

def background_removal(image):
    input_image = base64.b64encode(image.read()).decode('utf8')
    body = json.dumps({
        "taskType": "BACKGROUND_REMOVAL",
        "backgroundRemovalParams": {"image": input_image}
    })
    image_bytes = generate_image(body)
    return display_image(image_bytes)

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Amazon Nova Canvas Image Generation")

    with gr.Tab("Text to Image"):
        with gr.Column():
            gr.Markdown("Generate an image from a text prompt using the Amazon Nova Canvas model.")
            prompt = gr.Textbox(label="Prompt")
            output = gr.Image()
            gr.Button("Generate").click(text_to_image, inputs=prompt, outputs=output)

    with gr.Tab("Inpainting"):
        with gr.Column():
            gr.Markdown("Use inpainting to modify specific areas of an image based on a text prompt.")
            image = gr.Image(type='pil', label="Input Image")
            mask_prompt = gr.Textbox(label="Mask Prompt")
            output = gr.Image()
            gr.Button("Generate").click(inpainting, inputs=[image, mask_prompt], outputs=output)

    with gr.Tab("Outpainting"):
        with gr.Column():
            gr.Markdown("Extend an image beyond its original borders using a mask and text prompt.")
            image = gr.Image(type='pil', label="Input Image")
            mask_image = gr.Image(type='pil', label="Mask Image")
            text = gr.Textbox(label="Text")
            output = gr.Image()
            gr.Button("Generate").click(outpainting, inputs=[image, mask_image, text], outputs=output)

    with gr.Tab("Image Variation"):
        with gr.Column():
            gr.Markdown("Create variations of an image based on a text description.")
            image = gr.Image(type='pil', label="Input Image")
            text = gr.Textbox(label="Text")
            output = gr.Image()
            gr.Button("Generate").click(image_variation, inputs=[image, text], outputs=output)

    with gr.Tab("Image Conditioning"):
        with gr.Column():
            gr.Markdown("Generate an image conditioned on an input image and a text prompt.")
            image = gr.Image(type='pil', label="Input Image")
            text = gr.Textbox(label="Text")
            output = gr.Image()
            gr.Button("Generate").click(image_conditioning, inputs=[image, text], outputs=output)

    with gr.Tab("Color Guided Content"):
        with gr.Column():
            gr.Markdown("Generate an image using a color palette from a reference image and a text prompt.")
            image = gr.Image(type='pil', label="Input Image")
            text = gr.Textbox(label="Text")
            colors = gr.Textbox(label="Colors (comma-separated hex values)")
            output = gr.Image()
            gr.Button("Generate").click(color_guided_content, inputs=[image, text, colors], outputs=output)

    with gr.Tab("Background Removal"):
        with gr.Column():
            gr.Markdown("Remove the background from an image.")
            image = gr.Image(type='pil', label="Input Image")
            output = gr.Image()
            gr.Button("Generate").click(background_removal, inputs=image, outputs=output)

if __name__ == "__main__":
    demo.launch()