import streamlit as st from transformers import pipeline from PIL import Image import os # Load the image classification pipeline @st.cache_resource def load_image_classification_pipeline(): """ Load the image classification pipeline using a pretrained model. """ return pipeline("image-classification", model="Shresthadev403/food-image-classification") pipe_classification = load_image_classification_pipeline() # Load the BLOOM model for ingredient generation @st.cache_resource def load_bloom_pipeline(): """ Load the BLOOM model for ingredient generation. """ return pipeline("text-generation", model="bigscience/bloom-1b7") pipe_bloom = load_bloom_pipeline() def get_ingredients_bloom(food_name): """ Generate a list of ingredients for the given food item using BLOOM. Returns a clean, comma-separated list of ingredients. """ prompt = ( f"Generate a list of the main ingredients used to prepare {food_name}. " "Respond only with a concise, comma-separated list of ingredients, without any additional text, explanations, or placeholders. " "For example, if the food is pizza, respond with 'cheese, tomato sauce, bread, olive oil, basil'." ) try: response = pipe_bloom(prompt, max_length=50, num_return_sequences=1) generated_text = response[0]["generated_text"].strip() # Post-process the response ingredients = generated_text.split(":")[-1].strip() # Handle cases like "Ingredients: ..." ingredients = ingredients.replace(".", "").strip() # Remove periods and return f"Error generating ingredients: {e}" # Streamlit app setup st.title("Food Image Recognition with Ingredients") # Add banner image st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True) # Sidebar for model information st.sidebar.title("Model Information") st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification") st.sidebar.write("**LLM for Ingredients**: bigscience/bloom-1b7") # Upload image uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) st.write("Classifying...") # Make predictions predictions = pipe_classification(image) # Display only the top prediction top_food = predictions[0]['label'] st.header(f"Food: {top_food}") # Generate and display ingredients for the top prediction st.subheader("Ingredients") try: ingredients = get_ingredients_bloom(top_food) st.write(ingredients) except Exception as e: st.error(f"Error generating ingredients: {e}") # Footer st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.")