import streamlit as st from transformers import pipeline from PIL import Image import os # Load the image classification pipeline @st.cache_resource def load_image_classification_pipeline(): """ Load the image classification pipeline using a pretrained model. """ return pipeline("image-classification", model="Shresthadev403/food-image-classification") pipe_classification = load_image_classification_pipeline() # Load the GPT-Neo model for ingredient generation @st.cache_resource def load_llama_pipeline(): """ Load the GPT-Neo model for ingredient generation. """ return pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B") pipe_llama = load_llama_pipeline() def get_ingredients_llama(food_name): """ Generate a list of ingredients for the given food item using GPT-Neo. Returns a clean, comma-separated list of ingredients. """ prompt = ( f"List only the main ingredients typically used to prepare {food_name}. " "Respond with just the ingredients in a comma-separated list without any extra text or explanations." ) try: response = pipe_llama(prompt, max_length=50, num_return_sequences=1) generated_text = response[0]["generated_text"].strip() # Process the response to ensure it's a clean, comma-separated list ingredients = generated_text.split(":")[-1].strip() # Handle cases like "Ingredients: ..." ingredients = ingredients.replace(".", "").strip() # Remove periods and extra spaces return ingredients except Exception as e: return f"Error generating ingredients: {e}" # Streamlit app setup st.title("Food Image Recognition with Ingredients") # Add banner image st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True) # Sidebar for model information st.sidebar.title("Model Information") st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification") st.sidebar.write("**LLM for Ingredients**: EleutherAI/gpt-neo-1.3B") # Upload image uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) st.write("Classifying...") # Make predictions predictions = pipe_classification(image) # Display only the top prediction top_food = predictions[0]['label'] st.header(f"Food: {top_food}") # Generate and display ingredients for the top prediction st.subheader("Ingredients") try: ingredients = get_ingredients_llama(top_food) st.write(ingredients) except Exception as e: st.error(f"Error generating ingredients: {e}") # Footer st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.")