Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
-
|
5 |
-
from langchain_community.llms import HuggingFacePipeline
|
6 |
import os
|
7 |
|
8 |
# Set up the Google API Key (add this as a secret in Hugging Face Spaces)
|
9 |
os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"]
|
10 |
-
|
11 |
-
# Initialize Google Gemini model
|
12 |
-
llm = ChatGoogleGenerativeAI(
|
13 |
-
model="gemini-1.5-pro",
|
14 |
-
temperature=0
|
15 |
-
)
|
16 |
|
17 |
# Load the image classification pipeline
|
18 |
@st.cache_resource
|
@@ -30,8 +24,8 @@ def get_ingredients_google(food_name):
|
|
30 |
Generate a list of ingredients for the given food item using Google Gemini AI.
|
31 |
"""
|
32 |
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
33 |
-
response =
|
34 |
-
return response.strip()
|
35 |
|
36 |
# Streamlit app setup
|
37 |
st.title("Food Image Recognition with Ingredients")
|
@@ -42,7 +36,7 @@ st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True
|
|
42 |
# Sidebar for model information
|
43 |
st.sidebar.title("Model Information")
|
44 |
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
|
45 |
-
st.sidebar.write("**LLM for Ingredients**: Google Gemini
|
46 |
|
47 |
# Upload image
|
48 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
+
import google.generativeai as palm
|
|
|
5 |
import os
|
6 |
|
7 |
# Set up the Google API Key (add this as a secret in Hugging Face Spaces)
|
8 |
os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"]
|
9 |
+
palm.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load the image classification pipeline
|
12 |
@st.cache_resource
|
|
|
24 |
Generate a list of ingredients for the given food item using Google Gemini AI.
|
25 |
"""
|
26 |
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
27 |
+
response = palm.chat(messages=[{"content": prompt}])
|
28 |
+
return response.last.strip() if response else "Could not generate ingredients."
|
29 |
|
30 |
# Streamlit app setup
|
31 |
st.title("Food Image Recognition with Ingredients")
|
|
|
36 |
# Sidebar for model information
|
37 |
st.sidebar.title("Model Information")
|
38 |
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
|
39 |
+
st.sidebar.write("**LLM for Ingredients**: Google Gemini")
|
40 |
|
41 |
# Upload image
|
42 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|