import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch # Set the device based on availability device = "cuda" if torch.cuda.is_available() else "cpu" # Use the ByteDance/AnimateDiff-Lightning model model_repo_id = "ByteDance/AnimateDiff-Lightning" # Set the torch dtype based on available hardware if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 # Load the pipeline from the pretrained model repository pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) # Maximum values for seed and image size MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # Define the inference function def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): # Randomize seed if the checkbox is selected if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Generate the animation using the pipeline animation = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] # Assuming the model generates images in the `.images` property return animation, seed # Sample prompts for the UI examples = [ "A cat playing with a ball in a garden", "A dancing astronaut in space", "A flying dragon in the sky at sunset", ] # Define CSS for styling css = """ #col-container { margin: 0 auto; max-width: 640px; } """ # Build the Gradio UI with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # AnimateDiff Lightning Model Text-to-Animation """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Generated Animation", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) # Example prompts for user selection gr.Examples( examples=examples, inputs=[prompt] ) # Create an API endpoint for the model demo.api(fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed]) demo.launch()