Spaces:
Runtime error
Runtime error
File size: 5,315 Bytes
b60af6c c3e0ea9 b60af6c c3e0ea9 42ca832 b60af6c c3e0ea9 950bd0f 513b32d 950bd0f 231369c 950bd0f b60af6c c3e0ea9 b60af6c cd5e0ed 6fad687 b60af6c c3e0ea9 b60af6c cbad43a b60af6c 555640c c3e0ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import os, pandas as pd
from transformers import pipeline, set_seed
import random, re
import sys
from pathlib import Path
# read models from csv and init
models = [r for idx,r in pd.read_csv('models.csv').iterrows()]
current_model = models[0]
# pipeline and core fncn for prompt generation
gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
with open("ideas.txt", "r") as f:
line = f.readlines()
def generate(starting_text):
seed = random.randint(100, 1000000)
set_seed(seed)
if starting_text == "":
starting_text: str = line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize()
starting_text: str = re.sub(r"[,:\-β.!;?_]", '', starting_text)
response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=4)
response_list = []
for x in response:
resp = x['generated_text'].strip()
if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "β")) is False:
response_list.append(resp+'\n')
response_end = "\n".join(response_list)
response_end = re.sub('[^ ]+\.[^ ]+','', response_end)
response_end = response_end.replace("<", "").replace(">", "")
if response_end != "":
return response_end
examples = []
for x in range(8):
examples.append(line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize())
# text_gen = gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")
models2 = [] #can improve this, no need to load and keep all models in memory, increases cpu usage + latency
for model in models:
model_url = f"models/{model['url']}"
loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
models2.append(loaded_model)
def text_it(inputs,text_gen=generate):
return text_gen(inputs).split('\n\n')[0]
def set_model(current_model_index):
global current_model
current_model = models[current_model_index]
return gr.update(value=f"{current_model['name']}")
def send_it(inputs, model_choice):
proc = models2[model_choice]
return proc(inputs)
with gr.Blocks() as myface:
gr.HTML()
with gr.Row():
with gr.Row():
input_text = gr.Textbox(label="Prompt idea", lines=1)
# Model selection dropdown
model_name1 = gr.Dropdown(
label="Choose Model",
choices=[m["name"] for m in models],
type="index",
value=current_model["name"],
interactive=True,
)
with gr.Row():
see_prompts = gr.Button("Step 1 - Generate Prompts", variant="primary")
run = gr.Button("Step 2 - Generate Images", variant="primary")
with gr.Row():
output1 = gr.Image(label="")
output2 = gr.Image(label="")
output3 = gr.Image(label="")
with gr.Row():
magic1 = gr.Textbox(label="Generated Prompt", lines=2)
magic2 = gr.Textbox(label="Generated Prompt", lines=2)
magic3 = gr.Textbox(label="Generated Prompt", lines=2)
with gr.Row():
output4 = gr.Image(label="")
output5 = gr.Image(label="")
output6 = gr.Image(label="")
with gr.Row():
magic4 = gr.Textbox(label="Generated Prompt", lines=2)
magic5 = gr.Textbox(label="Generated Prompt", lines=2)
magic6 = gr.Textbox(label="Generated Prompt", lines=2)
with gr.Row():
output7 = gr.Image(label="")
output8 = gr.Image(label="")
output9 = gr.Image(label="")
with gr.Row():
magic7 = gr.Textbox(label="Generated Prompt", lines=2)
magic8 = gr.Textbox(label="Generated Prompt", lines=2)
magic9 = gr.Textbox(label="Generated Prompt", lines=2)
model_name1.change(set_model, inputs=model_name1, outputs=model_name1)
run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
run.click(send_it, inputs=[magic3, model_name1], outputs=[output3])
run.click(send_it, inputs=[magic4, model_name1], outputs=[output4])
run.click(send_it, inputs=[magic5, model_name1], outputs=[output5])
run.click(send_it, inputs=[magic6, model_name1], outputs=[output6])
run.click(send_it, inputs=[magic7, model_name1], outputs=[output7])
run.click(send_it, inputs=[magic8, model_name1], outputs=[output8])
run.click(send_it, inputs=[magic9, model_name1], outputs=[output9])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic3])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic4])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic5])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic6])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic7])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic8])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic9])
myface.queue(concurrency_count=64)
myface.launch(inline=True, show_api=False, max_threads=64) |