Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # Initialize sentiment analysis pipeline | |
| sentiment_pipeline = pipeline("sentiment-analysis") | |
| # Use a sarcasm detection model | |
| sarcasm_model_name = "mrm8488/t5-base-finetuned-sarcasm-twitter" # Correct model name for sarcasm detection | |
| # Create the sarcasm detection pipeline | |
| sarcasm_pipeline = pipeline("text2text-generation", model=sarcasm_model_name) | |
| def classify_sentence(sentence): | |
| # Detect sarcasm | |
| sarcasm_result = sarcasm_pipeline(sentence)[0]['generated_text'] | |
| is_sarcastic = sarcasm_result.strip().lower() == 'true' | |
| # Detect sentiment | |
| sentiment_result = sentiment_pipeline(sentence)[0] | |
| sentiment_label = sentiment_result['label'] | |
| sentiment_score = sentiment_result['score'] | |
| # Determine sentiment | |
| if sentiment_label == "NEGATIVE": | |
| sentiment = "negative" | |
| elif sentiment_label == "POSITIVE": | |
| sentiment = "positive" | |
| else: | |
| sentiment = "neutral" | |
| # Handle sarcasm | |
| if is_sarcastic: | |
| sentiment += " (sarcastic)" | |
| return sentiment | |
| # Streamlit app | |
| st.title("Sentence Analyzer") | |
| # User input | |
| sentence = st.text_input("Enter a sentence:", "") | |
| if st.button("Analyze"): | |
| if sentence: | |
| classification = classify_sentence(sentence) | |
| st.write(f"Sentence: {sentence}") | |
| st.write(f"Classification: {classification}") | |
| else: | |
| st.write("Please enter a sentence to analyze.") | |
| # Example sentences | |
| st.subheader("Example Sentences") | |
| example_sentences = [ | |
| "they are so beautiful", | |
| "This is the best day of my life.", | |
| "I'm not happy with your work.", | |
| "Yeah,you are not a good person!" | |
| ] | |
| if st.button("Analyze Example Sentences"): | |
| for sentence in example_sentences: | |
| st.write(f"Sentence: {sentence}") | |
| st.write(f"Classification: {classify_sentence(sentence)}") | |
| st.write() | |