Spaces:
Sleeping
Sleeping
Commit
·
61dfbf7
1
Parent(s):
bfd6a89
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
-
import torch
|
4 |
|
5 |
-
|
6 |
-
st.title("Correct your Grammar with Transformers")
|
7 |
st.write("")
|
8 |
st.write("Input your text here!")
|
9 |
|
10 |
-
# Create input text area
|
11 |
default_value = "Mike and Anna is skiing"
|
12 |
sent = st.text_area("Text", default_value, height=50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if st.button("Check Now"):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
for generated_sequence_idx, generated_sequence in enumerate(results):
|
32 |
-
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True)
|
33 |
-
generated_sequences.append(text)
|
34 |
-
|
35 |
-
# Check correctness
|
36 |
-
is_correct = sent == generated_sequences[0]
|
37 |
-
|
38 |
-
# Display correctness result
|
39 |
-
if is_correct:
|
40 |
-
st.write("Result: ", generated_sequences[0], " (Correct)", key="result_text", unsafe_allow_html=True)
|
41 |
-
else:
|
42 |
-
st.write("Result: ", generated_sequences[0], " (Wrong)", key="result_text", unsafe_allow_html=True)
|
43 |
-
|
44 |
-
# Display correct grammar sentence in a box
|
45 |
-
st.text("Correct Grammar Sentence:")
|
46 |
-
st.code(generated_sequences[0])
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
+
st.title("Correct Grammar with Transformers ")
|
|
|
4 |
st.write("")
|
5 |
st.write("Input your text here!")
|
6 |
|
|
|
7 |
default_value = "Mike and Anna is skiing"
|
8 |
sent = st.text_area("Text", default_value, height=50)
|
9 |
+
num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=3, value=1, step=1)
|
10 |
+
|
11 |
+
# Run Model
|
12 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
13 |
+
import torch
|
14 |
+
|
15 |
+
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
|
17 |
+
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device)
|
18 |
|
19 |
+
def correct_grammar(input_text, num_return_sequences=num_return_sequences):
|
20 |
+
batch = tokenizer([input_text], truncation=True, padding='max_length', max_length=len(input_text), return_tensors="pt").to(torch_device)
|
21 |
+
results = model.generate(**batch, max_length=len(input_text), num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5)
|
22 |
+
return results
|
23 |
+
|
24 |
+
# Prompts
|
25 |
+
results = correct_grammar(sent, num_return_sequences)
|
26 |
+
|
27 |
+
# Decode generated sequences
|
28 |
+
generated_sequences = [tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) for generated_sequence in results]
|
29 |
+
|
30 |
+
# Add "Check Now" button
|
31 |
if st.button("Check Now"):
|
32 |
+
st.write("### Results:")
|
33 |
+
|
34 |
+
# Check correctness and display in green or red
|
35 |
+
for generated_sequence in generated_sequences:
|
36 |
+
is_correct = generated_sequence == sent
|
37 |
+
color = "green" if is_correct else "red"
|
38 |
+
st.write(f"**Generated Sentence:**", generated_sequence, f" (Correct: {is_correct})", unsafe_allow_html=True)
|
39 |
+
|
40 |
+
# If incorrect, display correct grammar sentence in a box
|
41 |
+
if not is_correct:
|
42 |
+
st.warning(f"**Correct Grammar:** {sent}")
|
43 |
+
|
44 |
+
# Display original input
|
45 |
+
st.write("### Original Input:")
|
46 |
+
st.write(sent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|