Harika12323 commited on
Commit
b731e02
·
verified ·
1 Parent(s): 3508849

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -68
app.py CHANGED
@@ -1,68 +1,68 @@
1
- import streamlit as st
2
- import cv2
3
- import numpy as np
4
- import torch
5
- from yolov5 import YOLOv5
6
-
7
- # Initialize YOLOv5 model
8
- model = YOLOv5('yolov5s.pt') # Replace with your model path
9
-
10
- def detect_number_plate(frame):
11
- results = model(frame)
12
- detections = results.pandas().xyxy[0]
13
- plates = []
14
-
15
- for _, row in detections.iterrows():
16
- if row['name'] == 'number_plate': # Adjust class name
17
- plates.append({
18
- 'class': row['name'],
19
- 'confidence': row['confidence'],
20
- 'x_min': row['xmin'],
21
- 'y_min': row['ymin'],
22
- 'x_max': row['xmax'],
23
- 'y_max': row['ymax']
24
- })
25
-
26
- return plates
27
-
28
- def detect_smoke(frame):
29
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
30
- blur = cv2.GaussianBlur(gray, (21, 21), 0)
31
- _, thresh = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)
32
-
33
- smoke_intensity = np.sum(thresh) / (thresh.shape[0] * thresh.shape[1])
34
- smoke_detected = smoke_intensity > 0.1 # Adjust this threshold
35
-
36
- return smoke_detected, smoke_intensity
37
-
38
- def process_frame(frame):
39
- plates = detect_number_plate(frame)
40
- smoke_detected, smoke_intensity = detect_smoke(frame)
41
- return {
42
- 'smoke_detected': smoke_detected,
43
- 'smoke_intensity': smoke_intensity,
44
- 'number_plates': plates
45
- }
46
-
47
- # Streamlit app
48
- st.title("Vehicle Number Plate and Smoke Detection")
49
-
50
- uploaded_file = st.file_uploader("Choose an image...", type="jpg")
51
-
52
- if uploaded_file is not None:
53
- # Convert file to image
54
- in_memory_file = uploaded_file.read()
55
- np_arr = np.frombuffer(in_memory_file, np.uint8)
56
- frame = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
57
-
58
- # Process the frame
59
- results = process_frame(frame)
60
-
61
- st.subheader("Results")
62
- st.write(f"Smoke Detected: {results['smoke_detected']}")
63
- st.write(f"Smoke Intensity: {results['smoke_intensity']:.2f}")
64
-
65
- st.subheader("Number Plates Detected")
66
- for plate in results['number_plates']:
67
- st.write(f"Class: {plate['class']}, Confidence: {plate['confidence']:.2f}")
68
- st.write(f"Bounding Box: ({plate['x_min']}, {plate['y_min']}) to ({plate['x_max']}, {plate['y_max']})")
 
1
+ import streamlit as st
2
+ import cv2
3
+ import numpy as np
4
+ import torch
5
+ from yolov5 import YOLOv5
6
+
7
+ # Initialize YOLOv5 model
8
+ model = YOLOv5('best.pt') # Replace with your model path
9
+
10
+ def detect_number_plate(frame):
11
+ results = model(frame)
12
+ detections = results.pandas().xyxy[0]
13
+ plates = []
14
+
15
+ for _, row in detections.iterrows():
16
+ if row['name'] == 'number_plate': # Adjust class name
17
+ plates.append({
18
+ 'class': row['name'],
19
+ 'confidence': row['confidence'],
20
+ 'x_min': row['xmin'],
21
+ 'y_min': row['ymin'],
22
+ 'x_max': row['xmax'],
23
+ 'y_max': row['ymax']
24
+ })
25
+
26
+ return plates
27
+
28
+ def detect_smoke(frame):
29
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
30
+ blur = cv2.GaussianBlur(gray, (21, 21), 0)
31
+ _, thresh = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)
32
+
33
+ smoke_intensity = np.sum(thresh) / (thresh.shape[0] * thresh.shape[1])
34
+ smoke_detected = smoke_intensity > 0.1 # Adjust this threshold
35
+
36
+ return smoke_detected, smoke_intensity
37
+
38
+ def process_frame(frame):
39
+ plates = detect_number_plate(frame)
40
+ smoke_detected, smoke_intensity = detect_smoke(frame)
41
+ return {
42
+ 'smoke_detected': smoke_detected,
43
+ 'smoke_intensity': smoke_intensity,
44
+ 'number_plates': plates
45
+ }
46
+
47
+ # Streamlit app
48
+ st.title("Vehicle Number Plate and Smoke Detection")
49
+
50
+ uploaded_file = st.file_uploader("Choose an image...", type="jpg")
51
+
52
+ if uploaded_file is not None:
53
+ # Convert file to image
54
+ in_memory_file = uploaded_file.read()
55
+ np_arr = np.frombuffer(in_memory_file, np.uint8)
56
+ frame = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
57
+
58
+ # Process the frame
59
+ results = process_frame(frame)
60
+
61
+ st.subheader("Results")
62
+ st.write(f"Smoke Detected: {results['smoke_detected']}")
63
+ st.write(f"Smoke Intensity: {results['smoke_intensity']:.2f}")
64
+
65
+ st.subheader("Number Plates Detected")
66
+ for plate in results['number_plates']:
67
+ st.write(f"Class: {plate['class']}, Confidence: {plate['confidence']:.2f}")
68
+ st.write(f"Bounding Box: ({plate['x_min']}, {plate['y_min']}) to ({plate['x_max']}, {plate['y_max']})")