File size: 14,612 Bytes
9cc3eb2
 
 
 
 
 
 
 
 
4a2e688
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb6bea
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1435cf
 
 
 
 
359d34b
 
f1435cf
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
4a2e688
9cc3eb2
 
 
 
 
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a2e688
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
 
 
9cb6e3b
 
9cc3eb2
 
 
 
 
 
 
 
9cb6e3b
f1435cf
9cb6e3b
f1435cf
9cb6e3b
 
 
9cc3eb2
9cb6e3b
 
 
 
 
 
 
 
 
 
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
 
 
9cb6e3b
 
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb6e3b
f1435cf
9cb6e3b
f1435cf
9cb6e3b
 
 
9cc3eb2
9cb6e3b
 
 
 
 
 
 
 
 
 
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf167c
9cc3eb2
 
 
 
 
 
 
 
 
4a2e688
 
 
 
 
 
 
 
f1435cf
4a2e688
 
 
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
9cb6e3b
 
 
1cf72c0
9cc3eb2
 
 
9a52c51
 
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf72c0
9cc3eb2
 
70aa930
 
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf72c0
9cc3eb2
 
70aa930
 
9cc3eb2
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
aaf167c
9cc3eb2
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
1cf72c0
9cc3eb2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import gradio as gr
import numpy as np
from PIL import ImageDraw, Image

import torch
import torch.nn.functional as F

# mm libs
from mmdet.registry import MODELS
from mmengine import Config, print_log
from mmengine.structures import InstanceData

from ext.class_names.lvis_list import LVIS_CLASSES

LVIS_NAMES = LVIS_CLASSES

# Description
title = "<center><strong><font size='8'>Open-Vocabulary SAM<font></strong></center>"

css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"

model_cfg = Config.fromfile('app/configs/sam_r50x16_fpn.py')

examples = [
    ["app/assets/sa_01.jpg"],
    ["app/assets/sa_224028.jpg"],
    ["app/assets/sa_227490.jpg"],
    ["app/assets/sa_228025.jpg"],
    ["app/assets/sa_234958.jpg"],
    ["app/assets/sa_235005.jpg"],
    ["app/assets/sa_235032.jpg"],
    ["app/assets/sa_235036.jpg"],
    ["app/assets/sa_235086.jpg"],
    ["app/assets/sa_235094.jpg"],
    ["app/assets/sa_235113.jpg"],
    ["app/assets/sa_235130.jpg"],
]
model = MODELS.build(model_cfg.model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device=device)
model = model.eval()
model.init_weights()

mean = torch.tensor([123.675, 116.28, 103.53], device=device)[:, None, None]
std = torch.tensor([58.395, 57.12, 57.375], device=device)[:, None, None]


class IMGState:
    def __init__(self):
        self.img = None
        self.img_feat = None
        self.selected_points = []
        self.selected_points_labels = []
        self.selected_bboxes = []

        self.available_to_set = True

    def set_img(self, img, img_feat):
        self.img = img
        self.img_feat = img_feat

        self.available_to_set = False

    def clear(self):
        self.img = None
        self.img_feat = None
        self.selected_points = []
        self.selected_points_labels = []
        self.selected_bboxes = []

        self.available_to_set = True

    def clean(self):
        self.selected_points = []
        self.selected_points_labels = []
        self.selected_bboxes = []

    def to_device(self, device=device):
        if self.img_feat is not None:
            for k in self.img_feat:
                if isinstance(self.img_feat[k], torch.Tensor):
                    self.img_feat[k] = self.img_feat[k].to(device)
                elif isinstance(self.img_feat[k], tuple):
                    self.img_feat[k] = tuple(v.to(device) for v in self.img_feat[k])

    @property
    def available(self):
        return self.available_to_set


IMG_SIZE = 1024


def get_points_with_draw(image, img_state, evt: gr.SelectData):
    label = 'Add Mask'

    x, y = evt.index[0], evt.index[1]
    print_log(f"Point: {x}_{y}", logger='current')
    point_radius, point_color = 10, (97, 217, 54) if label == "Add Mask" else (237, 34, 13)

    img_state.selected_points.append([x, y])
    img_state.selected_points_labels.append(1 if label == "Add Mask" else 0)

    draw = ImageDraw.Draw(image)
    draw.ellipse(
        [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
        fill=point_color,
    )
    return img_state, image


def get_bbox_with_draw(image, img_state, evt: gr.SelectData):
    x, y = evt.index[0], evt.index[1]
    point_radius, point_color, box_outline = 5, (237, 34, 13), 2
    box_color = (237, 34, 13)

    if len(img_state.selected_bboxes) in [0, 1]:
        img_state.selected_bboxes.append([x, y])
    elif len(img_state.selected_bboxes) == 2:
        img_state.selected_bboxes = [[x, y]]
        image = Image.fromarray(img_state.img)
    else:
        raise ValueError(f"Cannot be {len(img_state.selected_bboxes)}")

    print_log(f"box_list: {img_state.selected_bboxes}", logger='current')

    draw = ImageDraw.Draw(image)
    draw.ellipse(
        [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
        fill=point_color,
    )

    if len(img_state.selected_bboxes) == 2:
        box_points = img_state.selected_bboxes
        bbox = (min(box_points[0][0], box_points[1][0]),
                min(box_points[0][1], box_points[1][1]),
                max(box_points[0][0], box_points[1][0]),
                max(box_points[0][1], box_points[1][1]),
                )
        draw.rectangle(
            bbox,
            outline=box_color,
            width=box_outline
        )
    return img_state, image


def segment_with_points(
        image,
        img_state,
):
    if img_state.available:
        return None, None, "State Error, please try again."
    output_img = img_state.img
    h, w = output_img.shape[:2]

    input_points = torch.tensor(img_state.selected_points, dtype=torch.float32, device=device)
    prompts = InstanceData(
        point_coords=input_points[None],
    )

    try:
        img_state.to_device()
        masks, cls_pred = model.extract_masks(img_state.img_feat, prompts)
        img_state.to_device('cpu')

        masks = masks[0, 0, :h, :w]
        masks = masks > 0.5

        cls_pred = cls_pred[0][0]
        scores, indices = torch.topk(cls_pred, 1)
        scores, indices = scores.tolist(), indices.tolist()
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            img_state.clear()
            print_log(f"CUDA OOM! please try again later", logger='current')
            return None, None, "CUDA OOM, please try again later."
        else:
            raise
    names = []
    for ind in indices:
        names.append(LVIS_NAMES[ind].replace('_', ' '))

    cls_info = ""
    for name, score in zip(names, scores):
        cls_info += "{} ({:.2f})".format(name, score)

    rgb_shape = tuple(list(masks.shape) + [3])
    color = np.zeros(rgb_shape, dtype=np.uint8)
    color[masks] = np.array([97, 217, 54])
    # color[masks] = np.array([217, 90, 54])
    output_img = (output_img * 0.7 + color * 0.3).astype(np.uint8)

    output_img = Image.fromarray(output_img)
    return img_state, image, output_img, cls_info


def segment_with_bbox(
        image,
        img_state
):
    if img_state.available:
        return None, None, "State Error, please try again."
    if len(img_state.selected_bboxes) != 2:
        return image, None, ""
    output_img = img_state.img
    h, w = output_img.shape[:2]

    box_points = img_state.selected_bboxes
    bbox = (
        min(box_points[0][0], box_points[1][0]),
        min(box_points[0][1], box_points[1][1]),
        max(box_points[0][0], box_points[1][0]),
        max(box_points[0][1], box_points[1][1]),
    )
    input_bbox = torch.tensor(bbox, dtype=torch.float32, device=device)
    prompts = InstanceData(
        bboxes=input_bbox[None],
    )

    try:
        img_state.to_device()
        masks, cls_pred = model.extract_masks(img_state.img_feat, prompts)
        img_state.to_device('cpu')

        masks = masks[0, 0, :h, :w]
        masks = masks > 0.5

        cls_pred = cls_pred[0][0]
        scores, indices = torch.topk(cls_pred, 1)
        scores, indices = scores.tolist(), indices.tolist()
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            img_state.clear()
            print_log(f"CUDA OOM! please try again later", logger='current')
            return None, None, "CUDA OOM, please try again later."
        else:
            raise
    names = []
    for ind in indices:
        names.append(LVIS_NAMES[ind].replace('_', ' '))

    cls_info = ""
    for name, score in zip(names, scores):
        cls_info += "{} ({:.2f})\n".format(name, score)

    rgb_shape = tuple(list(masks.shape) + [3])
    color = np.zeros(rgb_shape, dtype=np.uint8)
    color[masks] = np.array([97, 217, 54])
    # color[masks] = np.array([217, 90, 54])
    output_img = (output_img * 0.7 + color * 0.3).astype(np.uint8)

    output_img = Image.fromarray(output_img)
    return image, output_img, cls_info


def extract_img_feat(img, img_state):
    w, h = img.size
    scale = IMG_SIZE / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    img = img.resize((new_w, new_h), resample=Image.Resampling.BILINEAR)
    img_numpy = np.array(img)
    print_log(f"Successfully loaded an image with size {new_w} x {new_h}", logger='current')

    try:
        img_tensor = torch.tensor(img_numpy, device=device, dtype=torch.float32).permute((2, 0, 1))[None]
        img_tensor = (img_tensor - mean) / std
        img_tensor = F.pad(img_tensor, (0, IMG_SIZE - new_w, 0, IMG_SIZE - new_h), 'constant', 0)
        feat_dict = model.extract_feat(img_tensor)
        img_state.set_img(img_numpy, feat_dict)
        img_state.to_device('cpu')
        print_log(f"Successfully generated the image feats.", logger='current')
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            img_state.clear()
            print_log(f"CUDA OOM! please try again later", logger='current')
            return None, None, "CUDA OOM, please try again later."
        else:
            raise
    return img_state, img, None, "Please try to click something."


def clear_everything(img_state):
    img_state.clear()
    return img_state, None, None, "Please try to click something."


def clean_prompts(img_state):
    img_state.clean()
    if img_state.img is None:
        img_state.clear()
        return None, None, "Please try to click something."
    return img_state, Image.fromarray(img_state.img), None, "Please try to click something."


def register_point_mode():
    img_state_points = gr.State(value=IMGState())
    img_state_bbox = gr.State(value=IMGState())
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(title)

    # Point mode tab
    with gr.Tab("Point mode"):
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_p = gr.Image(label="Input Image", height=512, type="pil")

            with gr.Column(scale=1):
                segm_img_p = gr.Image(label="Segment", interactive=False, height=512, type="pil")

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        clean_btn_p = gr.Button("Clean Prompts", variant="secondary")
                        clear_btn_p = gr.Button("Restart", variant="secondary")
            with gr.Column():
                cls_info = gr.Textbox("", label='Labels')

        with gr.Row():
            with gr.Column():
                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[cond_img_p, img_state_points],
                    outputs=[img_state_points, cond_img_p, segm_img_p, cls_info],
                    examples_per_page=12,
                    fn=extract_img_feat,
                    run_on_click=True,
                    cache_examples=False,
                )

    # box mode tab
    with gr.Tab("Box mode"):
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_bbox = gr.Image(label="Input Image", height=512, type="pil")

            with gr.Column(scale=1):
                segm_img_bbox = gr.Image(label="Segment", interactive=False, height=512, type="pil")

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        clean_btn_bbox = gr.Button("Clean Prompts", variant="secondary")
                        clear_btn_bbox = gr.Button("Restart", variant="secondary")
            with gr.Column():
                cls_info_bbox = gr.Textbox("", label='Labels')

        with gr.Row():
            with gr.Column():
                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[cond_img_bbox, img_state_bbox],
                    outputs=[img_state_bbox, cond_img_bbox, segm_img_bbox, cls_info_bbox],
                    examples_per_page=12,
                    fn=extract_img_feat,
                    run_on_click=True,
                    cache_examples=False,
                )

    # extract image feature
    cond_img_p.upload(
        extract_img_feat,
        [cond_img_p, img_state_points],
        outputs=[img_state_points, cond_img_p, segm_img_p, cls_info]
    )
    cond_img_bbox.upload(
        extract_img_feat,
        [cond_img_bbox, img_state_bbox],
        outputs=[img_state_bbox, cond_img_bbox, segm_img_bbox, cls_info]
    )

    # get user added points
    cond_img_p.select(
        get_points_with_draw,
        [cond_img_p, img_state_points],
        outputs=[img_state_points, cond_img_p]
    ).then(
        segment_with_points,
        inputs=[cond_img_p, img_state_points],
        outputs=[img_state_points, cond_img_p, segm_img_p, cls_info]
    )
    cond_img_bbox.select(
        get_bbox_with_draw,
        [cond_img_bbox, img_state_bbox],
        outputs=[img_state_bbox, cond_img_bbox]
    ).then(
        segment_with_bbox,
        inputs=[cond_img_bbox, img_state_bbox],
        outputs=[cond_img_bbox, segm_img_bbox, cls_info_bbox]
    )

    # clean prompts
    clean_btn_p.click(
        clean_prompts,
        inputs=[img_state_points],
        outputs=[img_state_points, cond_img_p, segm_img_p, cls_info]
    )
    clean_btn_bbox.click(
        clean_prompts,
        inputs=[img_state_bbox],
        outputs=[img_state_bbox, cond_img_bbox, segm_img_bbox, cls_info_bbox]
    )

    # clear
    clear_btn_p.click(
        clear_everything,
        inputs=[img_state_points],
        outputs=[img_state_points, cond_img_p, segm_img_p, cls_info]
    )
    cond_img_p.clear(
        clear_everything,
        inputs=[img_state_points],
        outputs=[img_state_points, cond_img_p, segm_img_p, cls_info]
    )
    segm_img_p.clear(
        clear_everything,
        inputs=[img_state_points],
        outputs=[img_state_points, cond_img_p, segm_img_p, cls_info]
    )
    clear_btn_bbox.click(
        clear_everything,
        inputs=[img_state_bbox],
        outputs=[img_state_bbox, cond_img_bbox, segm_img_bbox, cls_info_bbox]
    )
    cond_img_bbox.clear(
        clear_everything,
        inputs=[img_state_bbox],
        outputs=[img_state_bbox, cond_img_bbox, segm_img_bbox, cls_info_bbox]
    )
    segm_img_bbox.clear(
        clear_everything,
        inputs=[img_state_bbox],
        outputs=[img_state_bbox, cond_img_bbox, segm_img_bbox, cls_info_bbox]
    )


if __name__ == '__main__':
    with gr.Blocks(css=css, title="Open-Vocabulary SAM") as demo:
        register_point_mode()
    demo.queue()
    demo.launch(show_api=False)