ChatBOT / retriever.py
HarshaBattula
adding gpt-3.5 based retrieval augmented system
a9e9e50
def initialize_document_retriever(top_k_documents, vector_database):
"""
Initialize a document retriever using a Chroma vector database.
This function initializes a document retriever that can be used to find and retrieve the most relevant documents
for a specified search query. The number of documents to retrieve is determined by the top_k_documents parameter.
Args:
top_k_documents (int): The number of top relevant documents to retrieve.
vector_database (obj): The Chroma vector database to use for retrieving documents.
Returns:
document_retriever (obj): The initialized document retriever.
"""
# Initialize the document retriever with the Chroma vector database and the number of documents to retrieve.
document_retriever = vector_database.as_retriever(
search_kwargs = {"k": top_k_documents}
)
return document_retriever
def retrieve_relevant_documents(search_query, document_retriever):
"""
Retrieve the most relevant documents for a given query.
This function uses an initialized document retriever to find and retrieve the most relevant documents
for a specified search query.
Args:
search_query (str): The search query for which to find and retrieve relevant documents.
document_retriever (obj): The initialized document retriever.
Returns:
relevant_documents (list): The list of most relevant documents for the search query.
"""
# Retrieve the most relevant documents for the search query using the document retriever.
relevant_documents = document_retriever.get_relevant_documents(search_query)
return relevant_documents