HaohuaLv's picture
Upload app.py
d1083aa
raw
history blame
8.4 kB
import gradio as gr
from PIL import Image, ImageDraw
import torch
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTModel, OwlViTImageProcessor
from transformers.image_transforms import center_to_corners_format
from transformers.models.owlvit.modeling_owlvit import box_iou
from functools import partial
# from utils import iou
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
from transformers.models.owlvit.modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTClassPredictionHead
def classpredictionhead_box_forward(
self,
image_embeds,
query_indice,
query_mask,
):
image_class_embeds = self.dense0(image_embeds)
# Normalize image and text features
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
print(image_class_embeds.shape)
query_embeds = image_class_embeds[0, query_indice].unsqueeze(0).unsqueeze(0)
print(query_embeds.shape)
# query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
# Get class predictions
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
# Apply a learnable shift and scale to logits
logit_shift = self.logit_shift(image_embeds)
logit_scale = self.logit_scale(image_embeds)
logit_scale = self.elu(logit_scale) + 1
pred_logits = (pred_logits + logit_shift) * logit_scale
if query_mask is not None:
if query_mask.ndim > 1:
query_mask = torch.unsqueeze(query_mask, dim=-2)
pred_logits = pred_logits.to(torch.float64)
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits)
pred_logits = pred_logits.to(torch.float32)
return (pred_logits, image_class_embeds)
def class_predictor(
self,
image_feats,
query_indice=None,
query_mask=None,
):
(pred_logits, image_class_embeds) = self.class_head.classpredictionhead_box_forward(image_feats, query_indice, query_mask)
return (pred_logits, image_class_embeds)
def get_max_iou_indice(target_pred_boxes, query_box, target_sizes):
boxes = center_to_corners_format(target_pred_boxes)
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
iou, _ = box_iou(boxes.squeeze(0), query_box)
return iou.argmax()
def box_guided_detection(
self: OwlViTForObjectDetection,
pixel_values,
query_box=None,
target_sizes=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Compute feature maps for the input and query images
# query_feature_map = self.image_embedder(pixel_values=query_pixel_values)[0]
feature_map, vision_outputs = self.image_embedder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
# batch_size, num_patches, num_patches, hidden_dim = query_feature_map.shape
# query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches * num_patches, hidden_dim))
# # Get top class embedding and best box index for each query image in batch
# query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(query_image_feats, query_feature_map)
# Predict object boxes
target_pred_boxes = self.box_predictor(image_feats, feature_map)
# Get MAX IOU box corresponding embedding
query_indice = get_max_iou_indice(target_pred_boxes, query_box, target_sizes)
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_indice=query_indice)
if not return_dict:
output = (
feature_map,
# query_feature_map,
target_pred_boxes,
# query_pred_boxes,
pred_logits,
class_embeds,
vision_outputs.to_tuple(),
)
output = tuple(x for x in output if x is not None)
return output
return OwlViTImageGuidedObjectDetectionOutput(
image_embeds=feature_map,
# query_image_embeds=query_feature_map,
target_pred_boxes=target_pred_boxes,
# query_pred_boxes=query_pred_boxes,
logits=pred_logits,
class_embeds=class_embeds,
text_model_output=None,
vision_model_output=vision_outputs,
)
model.box_guided_detection = partial(box_guided_detection, model)
model.class_predictor = partial(class_predictor, model)
model.class_head.classpredictionhead_box_forward = partial(classpredictionhead_box_forward, model.class_head)
outputs = None
def prepare_embedds(xmin, ymin, xmax, ymax, image):
box = (int(xmin), int(ymin), int(xmax), int(ymax))
return (image, [(box, "manul")])
def manul_box_change(xmin, ymin, xmax, ymax, image):
box = (int(xmin), int(ymin), int(xmax), int(ymax))
return (image, [(box, "manul")])
def threshold_change(xmin, ymin, xmax, ymax, image, threshold, nms):
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
global outputs
target_sizes = torch.Tensor([image.size[::-1]])
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
boxes = results[0]['boxes'].type(torch.int64).tolist()
scores = results[0]['scores'].tolist()
labels = list(zip(boxes, scores))
labels.append((manul_box, "manual"))
cnt = len(boxes) - 1
return (image, labels), cnt
def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms):
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
global outputs
target_sizes = torch.Tensor([image.size[::-1]])
inputs = processor(images=image.convert("RGB"), return_tensors="pt")
outputs = model.box_guided_detection(**inputs, query_box=torch.Tensor([manul_box]), target_sizes=target_sizes)
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
boxes = results[0]['boxes'].type(torch.int64).tolist()
scores = results[0]['scores'].tolist()
labels = list(zip(boxes, scores))
labels.append((manul_box, "manual"))
cnt = len(boxes) - 1
return (image, labels), cnt
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
threshold = gr.Number(0.95, label="threshold", step=0.01)
nms = gr.Number(0.3, label="nms", step=0.01)
cnt = gr.Number(0, label="count", interactive=False)
with gr.Column():
annotatedimage = gr.AnnotatedImage()
with gr.Row():
xmin = gr.Number(8, label="xmin")
ymin = gr.Number(198, label="ymin")
xmax = gr.Number(100, label="xmax")
ymax = gr.Number(428, label="ymax")
button = gr.Button(variant="primary")
xmin.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
ymin.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
xmax.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
ymax.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
threshold.change(threshold_change, [xmin, ymin, xmax, ymax, image, threshold, nms], [annotatedimage, cnt])
nms.change(threshold_change, [xmin, ymin, xmax, ymax, image, threshold, nms], [annotatedimage, cnt])
image.upload(prepare_embedds, [xmin, ymin, xmax, ymax, image], [annotatedimage])
button.click(one_shot_detect, [xmin, ymin, xmax, ymax, image, threshold, nms], [annotatedimage, cnt])
demo.launch(server_port=7861)