:gem: [Feature] Minimal working script for embedding
Browse files- transforms/__init__.py +0 -0
- transforms/embed.py +39 -0
transforms/__init__.py
ADDED
File without changes
|
transforms/embed.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
from tclogger import logger
|
6 |
+
from transformers import AutoModel
|
7 |
+
from numpy.linalg import norm
|
8 |
+
|
9 |
+
from configs.envs import ENVS
|
10 |
+
|
11 |
+
os.environ["HF_ENDPOINT"] = ENVS["HF_ENDPOINT"]
|
12 |
+
os.environ["HF_TOKEN"] = ENVS["HF_TOKEN"]
|
13 |
+
|
14 |
+
|
15 |
+
def cosine_similarity(a, b):
|
16 |
+
return (a @ b.T) / (norm(a) * norm(b))
|
17 |
+
|
18 |
+
|
19 |
+
class JinaAIEmbedder:
|
20 |
+
def __init__(self, model_name: str = "jinaai/jina-embeddings-v2-base-zh"):
|
21 |
+
self.model_name = model_name
|
22 |
+
self.load_model()
|
23 |
+
|
24 |
+
def load_model(self):
|
25 |
+
self.model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True)
|
26 |
+
|
27 |
+
def encode(self, text: Union[str, list[str]]):
|
28 |
+
if isinstance(text, str):
|
29 |
+
text = [text]
|
30 |
+
return self.model.encode(text)
|
31 |
+
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
embedder = JinaAIEmbedder()
|
35 |
+
text = ["How is the weather today?", "今天天气怎么样?"]
|
36 |
+
# text = "How is the weather today?"
|
37 |
+
embeddings = embedder.encode(text)
|
38 |
+
logger.success(embeddings)
|
39 |
+
# print(cosine_similarity(embeddings[0], embeddings[1]))
|