Spaces:
Sleeping
Sleeping
File size: 9,573 Bytes
46a11a0 54aea1b 46a11a0 54aea1b 46a11a0 54aea1b 46a11a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import torch
import librosa
import numpy as np
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import tempfile
import uuid
import shutil
# Disable numba JIT to avoid caching issues
os.environ["NUMBA_DISABLE_JIT"] = "1"
# Initialize FastAPI app
app = FastAPI(
title="Quran Recitation Comparison API",
description="API for comparing similarity between Quran recitations using Wav2Vec2 embeddings",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Global variables
MODEL = None
PROCESSOR = None
UPLOAD_DIR = os.path.join(tempfile.gettempdir(), "quran_comparison_uploads")
# Ensure upload directory exists
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Response models
class SimilarityResponse(BaseModel):
similarity_score: float
interpretation: str
class ErrorResponse(BaseModel):
error: str
# Initialize model from environment variable
def initialize_model():
global MODEL, PROCESSOR
# Get HF token from environment variable
hf_token = os.environ.get("HF_TOKEN", None)
model_name = os.environ.get("MODEL_NAME", "jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Loading model on device: {device}")
# Load model and processor
if hf_token:
PROCESSOR = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=hf_token)
MODEL = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=hf_token)
else:
PROCESSOR = Wav2Vec2Processor.from_pretrained(model_name)
MODEL = Wav2Vec2ForCTC.from_pretrained(model_name)
MODEL = MODEL.to(device)
MODEL.eval()
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise e
# Load audio file
def load_audio(file_path, target_sr=16000, trim_silence=True, normalize=True):
"""Load and preprocess an audio file."""
try:
y, sr = librosa.load(file_path, sr=target_sr)
if normalize:
y = librosa.util.normalize(y)
if trim_silence:
y, _ = librosa.effects.trim(y, top_db=30)
return y
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error loading audio: {e}")
# Get deep embedding
def get_deep_embedding(audio, sr=16000):
"""Extract frame-wise deep embeddings using the pretrained model."""
global MODEL, PROCESSOR
if MODEL is None or PROCESSOR is None:
raise HTTPException(status_code=500, detail="Model not initialized")
try:
device = next(MODEL.parameters()).device
input_values = PROCESSOR(
audio,
sampling_rate=sr,
return_tensors="pt"
).input_values.to(device)
with torch.no_grad():
outputs = MODEL(input_values, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
return embedding_seq
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error extracting embeddings: {e}")
# Custom DTW implementation to avoid librosa.sequence.dtw issues
def custom_dtw(X, Y, metric='euclidean'):
"""
Custom implementation of DTW to avoid librosa.sequence.dtw issues.
Parameters:
X, Y : numpy.ndarray
The two sequences to be aligned
metric : str, optional
The distance metric to use
Returns:
D : numpy.ndarray
The accumulated cost matrix
wp : list
The warping path
"""
# Initialize cost matrix
n, m = len(X[0]), len(Y[0])
D = np.zeros((n+1, m+1))
D[0, :] = np.inf
D[:, 0] = np.inf
D[0, 0] = 0
# Fill cost matrix
for i in range(1, n+1):
for j in range(1, m+1):
if metric == 'euclidean':
cost = np.sqrt(np.sum((X[:, i-1] - Y[:, j-1])**2))
elif metric == 'cosine':
cost = 1 - np.dot(X[:, i-1], Y[:, j-1]) / (np.linalg.norm(X[:, i-1]) * np.linalg.norm(Y[:, j-1]))
else:
cost = np.sum(np.abs(X[:, i-1] - Y[:, j-1])) # Manhattan by default
D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
# Backtrack to find warping path
i, j = n, m
wp = [(i, j)]
while i > 1 or j > 1:
candidates = [(i-1, j-1), (i-1, j), (i, j-1)]
valid_candidates = [(ii, jj) for ii, jj in candidates if ii > 0 and jj > 0]
i, j = min(valid_candidates, key=lambda x: D[x[0], x[1]])
wp.append((i, j))
wp.reverse()
return D, wp
# Compute DTW distance
def compute_dtw_distance(features1, features2):
"""Compute the DTW distance between two sequences of features."""
try:
# Use custom DTW implementation instead of librosa's
D, wp = custom_dtw(features1, features2, metric='euclidean')
distance = D[-1, -1]
normalized_distance = distance / len(wp)
return normalized_distance
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error computing DTW distance: {e}")
# Interpret similarity
def interpret_similarity(norm_distance):
"""Interpret the normalized distance value."""
if norm_distance == 0:
result = "The recitations are identical based on the deep embeddings."
score = 100
elif norm_distance < 1:
result = "The recitations are extremely similar."
score = 95
elif norm_distance < 5:
result = "The recitations are very similar with minor differences."
score = 80
elif norm_distance < 10:
result = "The recitations show moderate similarity."
score = 60
elif norm_distance < 20:
result = "The recitations show some noticeable differences."
score = 40
else:
result = "The recitations are quite different."
score = max(0, 100 - norm_distance)
return result, score
# Clean up temporary files
def cleanup_temp_files(file_paths):
"""Remove temporary files."""
for file_path in file_paths:
if os.path.exists(file_path):
try:
os.remove(file_path)
except Exception as e:
print(f"Error removing temporary file {file_path}: {e}")
# API endpoints
@app.post("/compare", response_model=SimilarityResponse)
async def compare_recitations(
background_tasks: BackgroundTasks,
file1: UploadFile = File(...),
file2: UploadFile = File(...)
):
"""
Compare two Quran recitations and return similarity metrics.
- **file1**: First audio file
- **file2**: Second audio file
Returns:
- **similarity_score**: Score between 0-100 indicating similarity
- **interpretation**: Text interpretation of the similarity
"""
# Check if model is initialized
if MODEL is None or PROCESSOR is None:
raise HTTPException(status_code=500, detail="Model not initialized")
# Temporary file paths
temp_file1 = os.path.join(UPLOAD_DIR, f"{uuid.uuid4()}.wav")
temp_file2 = os.path.join(UPLOAD_DIR, f"{uuid.uuid4()}.wav")
try:
# Save uploaded files
with open(temp_file1, "wb") as f:
shutil.copyfileobj(file1.file, f)
with open(temp_file2, "wb") as f:
shutil.copyfileobj(file2.file, f)
# Load audio files
audio1 = load_audio(temp_file1)
audio2 = load_audio(temp_file2)
# Extract embeddings
embedding1 = get_deep_embedding(audio1)
embedding2 = get_deep_embedding(audio2)
# Compute DTW distance
norm_distance = compute_dtw_distance(embedding1.T, embedding2.T)
# Interpret results
interpretation, similarity_score = interpret_similarity(norm_distance)
# Add cleanup task
background_tasks.add_task(cleanup_temp_files, [temp_file1, temp_file2])
return {
"similarity_score": similarity_score,
"interpretation": interpretation
}
except Exception as e:
# Ensure files are cleaned up even in case of error
background_tasks.add_task(cleanup_temp_files, [temp_file1, temp_file2])
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""Health check endpoint."""
if MODEL is None or PROCESSOR is None:
return JSONResponse(
status_code=503,
content={"status": "error", "message": "Model not initialized"}
)
return {"status": "ok", "model_loaded": True}
# Initialize model on startup
@app.on_event("startup")
async def startup_event():
initialize_model()
# Run the FastAPI app
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860)) # Default to port 7860 for Hugging Face Spaces
uvicorn.run("main:app", host="0.0.0.0", port=port, reload=False) |