#!/bin/bash #SBATCH --job-name=randeng_t5_77M_summary #SBATCH --nodes=1 #SBATCH --ntasks-per-node=2 #SBATCH --gres=gpu:2 # number of gpus #SBATCH --cpus-per-task=30 #SBATCH -o %x-%j.log set -x -e echo "START TIME: $(date)" MODEL_NAME=randeng_t5_784M_summary MICRO_BATCH_SIZE=8 ROOT_DIR=/cognitive_comp/dongxiaoqun/finetune/${MODEL_NAME} if [ ! -d ${ROOT_DIR} ];then mkdir ${ROOT_DIR} echo ${ROOT_DIR} created!!!!!!!!!!!!!! else echo ${ROOT_DIR} exist!!!!!!!!!!!!!!! fi ZERO_STAGE=1 config_json="${ROOT_DIR}/ds_config.${MODEL_NAME}.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE}, "steps_per_print": 100, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": false, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 50000000, "allgather_bucket_size": 500000000 }, "optimizer": { "type": "Adam", "params": { "lr": 1e-4, "weight_decay": 1e-2 } }, "scheduler": { "params": { "warmup_max_lr": 1e-04, "warmup_min_lr": 1e-05, "total_num_steps": 60000, "warmup_num_steps" : 500 }, "type": "WarmupDecayLR" }, "zero_allow_untested_optimizer": false, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=/cognitive_comp/dongxiaoqun/torch_extendsions # export MASTER_PORT=$[RANDOM%10000+30000] # export PL_FAULT_TOLERANT_TRAINING=1 TRAINER_ARGS=" --max_epochs 1 \ --gpus 1 \ --num_nodes 1 \ --strategy deepspeed_stage_${ZERO_STAGE} \ --default_root_dir $ROOT_DIR \ --dirpath $ROOT_DIR/ckpt \ --save_top_k 3 \ --monitor val_loss \ --mode min \ --save_last \ --every_n_train_steps 0 \ --val_check_interval 0.1 \ " prompt="summary:" DATA_ARGS=" --datasets_name lcsts \ --num_workers 30 \ --train_batchsize $MICRO_BATCH_SIZE \ --val_batchsize $MICRO_BATCH_SIZE \ --test_batchsize $MICRO_BATCH_SIZE \ --max_enc_length 128 \ --max_dec_length 64 \ --val_datasets_field val \ --prompt $prompt \ " # --prompt $prompt \ MODEL_ARGS=" --pretrained_model_path /cognitive_comp/ganruyi/experiments/randeng_t5_large_v2/ckpt/hf_pretrained_epoch0_step732500 \ --output_save_path $ROOT_DIR/randeng_t5_784M_predict_lcsts.json \ " SCRIPTS_PATH=/cognitive_comp/dongxiaoqun/debug/Fengshenbang-LM/fengshen/examples/summary/seq2seq_summary.py SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD source activate conda activate torchnew srun --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=30 -o ${MODEL_NAME}-%J.log --jobid=229668 bash -c 'python3 $SCRIPT_PATH $CMD' # source activate base # python $CMD # srun --jobid=229668 --nodes=1 --gres=gpu:1 --ntasks-per-node=1 --cpus-per-task=30 -e ${ROOT_DIR}/${MODEL_NAME}-%j.err -o ${ROOT_DIR}/${MODEL_NAME}-%j.log singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD' # srun python $CMD # srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'