#!/bin/bash #SBATCH --job-name=bart_summary #SBATCH --nodes=1 #SBATCH --ntasks-per-node=4 #SBATCH --gres=gpu:4 # number of gpus #SBATCH -o %x-%j.log set -x -e echo "START TIME: $(date)" MODEL_NAME=bart-base MICRO_BATCH_SIZE=16 ROOT_DIR=/cognitive_comp/dongxiaoqun/finetune/${MODEL_NAME} ZERO_STAGE=1 export TORCH_EXTENSIONS_DIR=/cognitive_comp/dongxiaoqun/torch_extendsions config_json="./ds_config.${MODEL_NAME}.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE}, "steps_per_print": 100, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": false, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 50000000, "allgather_bucket_size": 500000000 }, "optimizer": { "type": "Adam", "params": { "lr": 1e-4, "betas": [ 0.9, 0.95 ], "eps": 1e-8, "weight_decay": 5e-2 } }, "scheduler": { "type": "WarmupLR", "params":{ "warmup_min_lr": 5e-6, "warmup_max_lr": 1e-4 } }, "zero_allow_untested_optimizer": false, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false } EOT # export PL_DEEPSPEED_CONFIG_PATH=$config_json TRAINER_ARGS=" --max_epochs 2 \ --gpus 1 \ --num_nodes 1 \ --strategy deepspeed_stage_${ZERO_STAGE} \ --default_root_dir $ROOT_DIR \ --dirpath $ROOT_DIR/ckpt \ --save_top_k 3 \ --monitor val_loss \ --mode min \ --save_last \ --every_n_train_steps 0 \ --val_check_interval 0.1 \ " prompt='"' DATA_ARGS=" --datasets_name lcsts \ --num_workers 8 \ --train_batchsize $MICRO_BATCH_SIZE \ --val_batchsize $MICRO_BATCH_SIZE \ --test_batchsize $MICRO_BATCH_SIZE \ --max_enc_length 128 \ --max_dec_length 64 \ --val_datasets_field val \ --prompt $prompt \ " MODEL_ARGS=" --pretrained_model_path /cognitive_comp/gaoxinyu/pretrained_model/bart-base \ --output_save_path $ROOT_DIR/${MODEL_NAME}_predict_lcsts.json \ --learning_rate 1e-4 \ --weight_decay 0.1 \ --precision 16 \ " SCRIPTS_PATH=seq2seq_summary.py export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD #singularity exec --nv -B /cognitive_comp/ganruyi/Megatron/:/cognitive_comp/ganruyi/Megatron/,/cognitive_comp/gaoxinyu/:/cognitive_comp/gaoxinyu/ $SINGULARITY_PATH python $CMD # to debug - add echo (it exits and prints what it would have launched) #run_cmd="$PY_LAUNCHER $CMD" # srun --nodes=1 --gres=gpu:4 --ntasks-per-node=4 --cpus-per-gpu=20 source activate conda activate torchnew srun --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=30 -o ${MODEL_NAME}-%J.log --jobid=229623 bash -c 'python3 $SCRIPT_PATH $CMD'