Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The IDEA Authors. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" RoFormer model configuration """ | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
RoFormer_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
# See all RoFormer models at https://huggingface.co/models?filter=bert | |
} | |
class RoFormerConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.RoFormerModel`. It is | |
used to instantiate a RoFormer model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the RoFormer | |
`megatron-bert-uncased-345m <https://huggingface.co/nvidia/megatron-bert-uncased-345m>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 29056): | |
Vocabulary size of the RoFormer model. Defines the number of different tokens that can be represented | |
by the :obj:`inputs_ids` passed when calling :class:`~transformers.RoFormerModel`. | |
hidden_size (:obj:`int`, `optional`, defaults to 1024): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (:obj:`int`, `optional`, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (:obj:`int`, `optional`, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (:obj:`int`, `optional`, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (:obj:`int`, `optional`, defaults to 2): | |
The vocabulary size of the :obj:`token_type_ids` passed when calling | |
:class:`~transformers.RoFormerModel`. | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): | |
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, | |
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on | |
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) | |
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to | |
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) | |
<https://arxiv.org/abs/2009.13658>`__. | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if ``config.is_decoder=True``. | |
Examples:: | |
>>> from transformers import RoFormerModel, RoFormerConfig | |
>>> # Initializing a RoFormer bert-base-uncased style configuration | |
>>> configuration = RoFormerConfig() | |
>>> # Initializing a model from the bert-base-uncased style configuration | |
>>> model = RoFormerModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "roformer" | |
def __init__( | |
self, | |
vocab_size=29056, | |
hidden_size=1024, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
intermediate_size=4096, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
gradient_checkpointing=False, | |
position_embedding_type="absolute", | |
use_cache=True, | |
**kwargs | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.gradient_checkpointing = gradient_checkpointing | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |