Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Longformer model. """ | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
from numpy.lib.function_base import kaiser | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN, gelu | |
from transformers.file_utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from transformers.modeling_utils import ( | |
PreTrainedModel, | |
apply_chunking_to_forward, | |
find_pruneable_heads_and_indices, | |
prune_linear_layer, | |
) | |
from transformers.utils import logging | |
from transformers import LongformerConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" | |
_CONFIG_FOR_DOC = "LongformerConfig" | |
_TOKENIZER_FOR_DOC = "LongformerTokenizer" | |
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"allenai/longformer-base-4096", | |
"allenai/longformer-large-4096", | |
"allenai/longformer-large-4096-finetuned-triviaqa", | |
"allenai/longformer-base-4096-extra.pos.embd.only", | |
"allenai/longformer-large-4096-extra.pos.embd.only", | |
# See all Longformer models at https://huggingface.co/models?filter=longformer | |
] | |
class LongformerBaseModelOutput(ModelOutput): | |
""" | |
Base class for Longformer's outputs, with potential hidden states, local and global attentions. | |
Args: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
last_hidden_state: torch.FloatTensor | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LongformerBaseModelOutputWithPooling(ModelOutput): | |
""" | |
Base class for Longformer's outputs that also contains a pooling of the last hidden states. | |
Args: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): | |
Last layer hidden-state of the first token of the sequence (classification token) further processed by a | |
Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence | |
prediction (classification) objective during pretraining. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
last_hidden_state: torch.FloatTensor | |
pooler_output: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LongformerMaskedLMOutput(ModelOutput): | |
""" | |
Base class for masked language models outputs. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Masked language modeling (MLM) loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LongformerQuestionAnsweringModelOutput(ModelOutput): | |
""" | |
Base class for outputs of question answering Longformer models. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Span-start scores (before SoftMax). | |
end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Span-end scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
start_logits: torch.FloatTensor = None | |
end_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LongformerSequenceClassifierOutput(ModelOutput): | |
""" | |
Base class for outputs of sentence classification models. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LongformerMultipleChoiceModelOutput(ModelOutput): | |
""" | |
Base class for outputs of multiple choice Longformer models. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Classification loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): | |
`num_choices` is the second dimension of the input tensors. (see `input_ids` above). | |
Classification scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LongformerTokenClassifierOutput(ModelOutput): | |
""" | |
Base class for outputs of token classification models. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : | |
Classification loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): | |
Classification scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def _get_question_end_index(input_ids, sep_token_id): | |
""" | |
Computes the index of the first occurrence of `sep_token_id`. | |
""" | |
sep_token_indices = (input_ids == sep_token_id).nonzero() | |
batch_size = input_ids.shape[0] | |
assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions" | |
assert ( | |
sep_token_indices.shape[0] == 3 * batch_size | |
), f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this error." | |
return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1] | |
def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True): | |
""" | |
Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is | |
True` else after `sep_token_id`. | |
""" | |
question_end_index = _get_question_end_index(input_ids, sep_token_id) | |
question_end_index = question_end_index.unsqueeze( | |
dim=1) # size: batch_size x 1 | |
# bool attention mask with True in locations of global attention | |
attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device) | |
if before_sep_token is True: | |
attention_mask = (attention_mask.expand_as(input_ids) | |
< question_end_index).to(torch.uint8) | |
else: | |
# last token is separation token and should not be counted and in the middle are two separation tokens | |
attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.uint8) * ( | |
attention_mask.expand_as(input_ids) < input_ids.shape[-1] | |
).to(torch.uint8) | |
return attention_mask | |
def create_position_ids_from_input_ids(input_ids, padding_idx): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask | |
return incremental_indices.long() + padding_idx | |
class LongformerEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding( | |
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding( | |
config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
# Modify | |
# self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
# self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
# self.padding_idx = config.pad_token_id | |
# self.position_embeddings = nn.Embedding( | |
# config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
# ) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
# if position_ids is None: | |
# if input_ids is not None: | |
# # Create the position ids from the input token ids. Any padded tokens remain padded. | |
# position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) | |
# else: | |
# position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# if position_ids is None: | |
# position_ids = self.position_ids[:, :seq_length] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros( | |
input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
# Modify | |
# position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor inputs_embeds: | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
class RoPEmbedding(nn.Module): | |
def __init__(self, d_model): | |
super(RoPEmbedding, self).__init__() | |
self.d_model = d_model | |
div_term = torch.exp(torch.arange( | |
0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
self.register_buffer('div_term', div_term) | |
def forward(self, x, seq_dim=0): | |
x = x # [seq_len,num_head,batch_size,per_head_hidden_size] | |
t = torch.arange(x.size(seq_dim), device=x.device).type_as( | |
self.div_term) | |
sinusoid_inp = torch.outer(t, self.div_term) | |
sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos() # [s, hn] | |
o_shape = (sin.size(0), 1, 1, sin.size(1)) | |
sin, cos = sin.view(*o_shape), cos.view(*o_shape) # [s, 1, 1, hn] | |
sin = torch.repeat_interleave(sin, 2, dim=-1) | |
cos = torch.repeat_interleave(cos, 2, dim=-1) | |
x2 = torch.stack([-x[..., 1::2], x[..., ::2]], dim=-1).reshape_as(x) | |
x = cos * x + sin * x2 | |
return x | |
class LongformerSelfAttention(nn.Module): | |
def __init__(self, config, layer_id): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.config = config | |
self.num_heads = config.num_attention_heads | |
self.head_dim = int(config.hidden_size / config.num_attention_heads) | |
self.embed_dim = config.hidden_size | |
self.query = nn.Linear(config.hidden_size, self.embed_dim) | |
self.key = nn.Linear(config.hidden_size, self.embed_dim) | |
self.value = nn.Linear(config.hidden_size, self.embed_dim) | |
# separate projection layers for tokens with global attention | |
# self.query_global = nn.Linear(config.hidden_size, self.embed_dim) | |
# self.key_global = nn.Linear(config.hidden_size, self.embed_dim) | |
# self.value_global = nn.Linear(config.hidden_size, self.embed_dim) | |
self.dropout = config.attention_probs_dropout_prob | |
self.layer_id = layer_id | |
attention_window = config.attention_window[self.layer_id] | |
assert ( | |
attention_window % 2 == 0 | |
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" | |
assert ( | |
attention_window > 0 | |
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" | |
self.one_sided_attn_window_size = attention_window // 2 | |
self.rope_emb = RoPEmbedding(self.head_dim) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
layer_head_mask=None, | |
is_index_masked=None, | |
is_index_global_attn=None, | |
is_global_attn=None, | |
output_attentions=False, | |
): | |
""" | |
:class:`LongformerSelfAttention` expects `len(hidden_states)` to be multiple of `attention_window`. Padding to | |
`attention_window` happens in :meth:`LongformerModel.forward` to avoid redoing the padding on each layer. | |
The `attention_mask` is changed in :meth:`LongformerModel.forward` from 0, 1, 2 to: | |
* -10000: no attention | |
* 0: local attention | |
* +10000: global attention | |
""" | |
# print(attention_mask.shape) | |
if not self.config.use_sparse_attention: # 如果不使用稀疏attention,则使用标准的attention | |
hidden_states = hidden_states.transpose(0, 1) | |
# project hidden states | |
query_vectors = self.query(hidden_states) | |
key_vectors = self.key(hidden_states) | |
value_vectors = self.value(hidden_states) | |
seq_len, batch_size, embed_dim = hidden_states.size() | |
assert ( | |
embed_dim == self.embed_dim | |
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" | |
# normalize query | |
# query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
# key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
# print('query_vectors',query_vectors.shape) | |
query_vectors = query_vectors.view( | |
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) | |
key_vectors = key_vectors.view( | |
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) | |
query_vectors = self.rope_emb(query_vectors) | |
key_vectors = self.rope_emb(key_vectors) | |
query_vectors = query_vectors.transpose(0, 2) # [b,mh,s,hd] | |
key_vectors = key_vectors.transpose(0, 2).transpose(2, 3) | |
# print('query_vectors',query_vectors.shape) | |
query_vectors /= math.sqrt(self.head_dim) | |
attention_mask = self.get_extended_attention_mask( | |
attention_mask, attention_mask.shape, attention_mask.device) | |
attn_scores = torch.matmul( | |
query_vectors, key_vectors)+attention_mask | |
attn_scores = torch.nn.functional.softmax(attn_scores, dim=-1) | |
value_vectors = value_vectors.view( | |
seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1).transpose(1, 2) | |
outputs = torch.matmul(attn_scores, value_vectors).transpose( | |
1, 2).contiguous().view(batch_size, seq_len, self.num_heads*self.head_dim) | |
# print('output',outputs.shape) | |
outputs = (outputs,) | |
return outputs+(attn_scores,) | |
# print('hidden.shape',hidden_states.shape) | |
# print('attention_mask.shape',attention_mask.shape) | |
# print('att_mask:',attention_mask) | |
hidden_states = hidden_states.transpose(0, 1) | |
# project hidden states | |
query_vectors = self.query(hidden_states) | |
key_vectors = self.key(hidden_states) | |
value_vectors = self.value(hidden_states) | |
seq_len, batch_size, embed_dim = hidden_states.size() | |
assert ( | |
embed_dim == self.embed_dim | |
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" | |
# normalize query | |
# query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
# key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
query_vectors = query_vectors.view( | |
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) | |
key_vectors = key_vectors.view( | |
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) | |
query_vectors = self.rope_emb(query_vectors) | |
key_vectors = self.rope_emb(key_vectors) | |
query_vectors = query_vectors.transpose(1, 2).transpose(0, 1) | |
key_vectors = key_vectors.transpose(1, 2).transpose(0, 1) | |
query_vectors /= math.sqrt(self.head_dim) | |
attn_scores = self._sliding_chunks_query_key_matmul( | |
query_vectors, key_vectors, self.one_sided_attn_window_size | |
) | |
# print('att:',attn_scores.shape) | |
# values to pad for attention probs | |
remove_from_windowed_attention_mask = ( | |
attention_mask != 0)[:, :, None, None] | |
# cast to fp32/fp16 then replace 1's with -inf | |
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( | |
remove_from_windowed_attention_mask, -10000.0 | |
) | |
# diagonal mask with zeros everywhere and -inf inplace of padding | |
diagonal_mask = self._sliding_chunks_query_key_matmul( | |
float_mask.new_ones(size=float_mask.size() | |
), float_mask, self.one_sided_attn_window_size | |
) | |
# pad local attention probs | |
attn_scores += diagonal_mask | |
assert list(attn_scores.size()) == [ | |
batch_size, | |
seq_len, | |
self.num_heads, | |
self.one_sided_attn_window_size * 2 + 1, | |
], f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" | |
# compute local attention probs from global attention keys and contact over window dim | |
if is_global_attn: | |
# compute global attn indices required through out forward fn | |
( | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
) = self._get_global_attn_indices(is_index_global_attn) | |
# calculate global attn probs from global key | |
global_key_attn_scores = self._concat_with_global_key_attn_probs( | |
query_vectors=query_vectors, | |
key_vectors=key_vectors, | |
max_num_global_attn_indices=max_num_global_attn_indices, | |
is_index_global_attn_nonzero=is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, | |
) | |
# concat to local_attn_probs | |
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1) | |
attn_scores = torch.cat( | |
(global_key_attn_scores, attn_scores), dim=-1) | |
# free memory | |
del global_key_attn_scores | |
attn_probs = nn.functional.softmax( | |
attn_scores, dim=-1, dtype=torch.float32 | |
) # use fp32 for numerical stability | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == ( | |
self.num_heads, | |
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs | |
# softmax sometimes inserts NaN if all positions are masked, replace them with 0 | |
attn_probs = torch.masked_fill( | |
attn_probs, is_index_masked[:, :, None, None], 0.0) | |
attn_probs = attn_probs.type_as(attn_scores) | |
# free memory | |
del attn_scores | |
# apply dropout | |
attn_probs = nn.functional.dropout( | |
attn_probs, p=self.dropout, training=self.training) | |
value_vectors = value_vectors.view( | |
seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
# compute local attention output with global attention value and add | |
if is_global_attn: | |
# compute sum of global and local attn | |
attn_output = self._compute_attn_output_with_global_indices( | |
value_vectors=value_vectors, | |
attn_probs=attn_probs, | |
max_num_global_attn_indices=max_num_global_attn_indices, | |
is_index_global_attn_nonzero=is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, | |
) | |
else: | |
# compute local attn only | |
attn_output = self._sliding_chunks_matmul_attn_probs_value( | |
attn_probs, value_vectors, self.one_sided_attn_window_size | |
) | |
assert attn_output.size() == (batch_size, seq_len, self.num_heads, | |
self.head_dim), "Unexpected size" | |
attn_output = attn_output.transpose(0, 1).reshape( | |
seq_len, batch_size, embed_dim).contiguous() | |
# compute value for global attention and overwrite to attention output | |
# TODO: remove the redundant computation | |
if is_global_attn: | |
global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( | |
global_query_vectors=query_vectors, | |
global_key_vectors=key_vectors, | |
global_value_vectors=value_vectors, | |
max_num_global_attn_indices=max_num_global_attn_indices, | |
layer_head_mask=layer_head_mask, | |
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, | |
is_index_global_attn_nonzero=is_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, | |
is_index_masked=is_index_masked, | |
) | |
# print('global_attn_output',global_attn_output.shape) | |
# get only non zero global attn output | |
nonzero_global_attn_output = global_attn_output[ | |
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] | |
] | |
# print('nonzero_global_attn_output',nonzero_global_attn_output.shape) | |
# overwrite values with global attention | |
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( | |
len(is_local_index_global_attn_nonzero[0]), -1 | |
) | |
# The attention weights for tokens with global attention are | |
# just filler values, they were never used to compute the output. | |
# Fill with 0 now, the correct values are in 'global_attn_probs'. | |
attn_probs[is_index_global_attn_nonzero] = 0 | |
outputs = (attn_output.transpose(0, 1),) | |
if output_attentions: | |
outputs += (attn_probs,) | |
return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs | |
def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): | |
"""pads rows and then flips rows and columns""" | |
hidden_states_padded = nn.functional.pad( | |
hidden_states_padded, padding | |
) # padding value is not important because it will be overwritten | |
hidden_states_padded = hidden_states_padded.view( | |
*hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) | |
) | |
return hidden_states_padded | |
def _pad_and_diagonalize(chunked_hidden_states): | |
""" | |
shift every row 1 step right, converting columns into diagonals. | |
Example:: | |
chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, | |
-1.8348, 0.7672, 0.2986, 0.0285, | |
-0.7584, 0.4206, -0.0405, 0.1599, | |
2.0514, -1.1600, 0.5372, 0.2629 ] | |
window_overlap = num_rows = 4 | |
(pad & diagonalize) => | |
[ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 | |
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 | |
0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 | |
0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] | |
""" | |
total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() | |
chunked_hidden_states = nn.functional.pad( | |
chunked_hidden_states, (0, window_overlap + 1) | |
) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten | |
chunked_hidden_states = chunked_hidden_states.view( | |
total_num_heads, num_chunks, -1 | |
) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap | |
chunked_hidden_states = chunked_hidden_states[ | |
:, :, :-window_overlap | |
] # total_num_heads x num_chunks x window_overlap*window_overlap | |
chunked_hidden_states = chunked_hidden_states.view( | |
total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim | |
) | |
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] | |
return chunked_hidden_states | |
def _chunk(hidden_states, window_overlap): | |
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w""" | |
# non-overlapping chunks of size = 2w | |
hidden_states = hidden_states.view( | |
hidden_states.size(0), | |
hidden_states.size(1) // (window_overlap * 2), | |
window_overlap * 2, | |
hidden_states.size(2), | |
) | |
# use `as_strided` to make the chunks overlap with an overlap size = window_overlap | |
chunk_size = list(hidden_states.size()) | |
chunk_size[1] = chunk_size[1] * 2 - 1 | |
chunk_stride = list(hidden_states.stride()) | |
chunk_stride[1] = chunk_stride[1] // 2 | |
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) | |
def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: | |
beginning_mask_2d = input_tensor.new_ones( | |
affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) | |
beginning_mask = beginning_mask_2d[None, :, None, :] | |
ending_mask = beginning_mask.flip(dims=(1, 3)) | |
beginning_input = input_tensor[:, | |
:affected_seq_len, :, : affected_seq_len + 1] | |
beginning_mask = beginning_mask.expand(beginning_input.size()) | |
# `== 1` converts to bool or uint8 | |
beginning_input.masked_fill_(beginning_mask == 1, -float("inf")) | |
ending_input = input_tensor[:, - | |
affected_seq_len:, :, -(affected_seq_len + 1):] | |
ending_mask = ending_mask.expand(ending_input.size()) | |
# `== 1` converts to bool or uint8 | |
ending_input.masked_fill_(ending_mask == 1, -float("inf")) | |
def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): | |
""" | |
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This | |
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an | |
overlap of size window_overlap | |
""" | |
batch_size, seq_len, num_heads, head_dim = query.size() | |
assert ( | |
seq_len % (window_overlap * 2) == 0 | |
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" | |
assert query.size() == key.size() | |
chunks_count = seq_len // window_overlap - 1 | |
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 | |
query = query.transpose(1, 2).reshape( | |
batch_size * num_heads, seq_len, head_dim) | |
key = key.transpose(1, 2).reshape( | |
batch_size * num_heads, seq_len, head_dim) | |
query = self._chunk(query, window_overlap) | |
key = self._chunk(key, window_overlap) | |
# matrix multiplication | |
# bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim | |
# bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim | |
# bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap | |
diagonal_chunked_attention_scores = torch.einsum( | |
"bcxd,bcyd->bcxy", (query, key)) # multiply | |
# convert diagonals into columns | |
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( | |
diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) | |
) | |
# allocate space for the overall attention matrix where the chunks are combined. The last dimension | |
# has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to | |
# window_overlap previous words). The following column is attention score from each word to itself, then | |
# followed by window_overlap columns for the upper triangle. | |
diagonal_attention_scores = diagonal_chunked_attention_scores.new_empty( | |
(batch_size * num_heads, chunks_count + 1, | |
window_overlap, window_overlap * 2 + 1) | |
) | |
# copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions | |
# - copying the main diagonal and the upper triangle | |
diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ | |
:, :, :window_overlap, : window_overlap + 1 | |
] | |
diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ | |
:, -1, window_overlap:, : window_overlap + 1 | |
] | |
# - copying the lower triangle | |
diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ | |
:, :, -(window_overlap + 1): -1, window_overlap + 1: | |
] | |
diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ | |
:, 0, : window_overlap - 1, 1 - window_overlap: | |
] | |
# separate batch_size and num_heads dimensions again | |
diagonal_attention_scores = diagonal_attention_scores.view( | |
batch_size, num_heads, seq_len, 2 * window_overlap + 1 | |
).transpose(2, 1) | |
self._mask_invalid_locations(diagonal_attention_scores, window_overlap) | |
return diagonal_attention_scores | |
def _sliding_chunks_matmul_attn_probs_value( | |
self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int | |
): | |
""" | |
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the | |
same shape as `attn_probs` | |
""" | |
batch_size, seq_len, num_heads, head_dim = value.size() | |
assert seq_len % (window_overlap * 2) == 0 | |
assert attn_probs.size()[:3] == value.size()[:3] | |
assert attn_probs.size(3) == 2 * window_overlap + 1 | |
chunks_count = seq_len // window_overlap - 1 | |
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap | |
chunked_attn_probs = attn_probs.transpose(1, 2).reshape( | |
batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1 | |
) | |
# group batch_size and num_heads dimensions into one | |
value = value.transpose(1, 2).reshape( | |
batch_size * num_heads, seq_len, head_dim) | |
# pad seq_len with w at the beginning of the sequence and another window overlap at the end | |
padded_value = nn.functional.pad( | |
value, (0, 0, window_overlap, window_overlap), value=-1) | |
# chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap | |
chunked_value_size = (batch_size * num_heads, | |
chunks_count + 1, 3 * window_overlap, head_dim) | |
chunked_value_stride = padded_value.stride() | |
chunked_value_stride = ( | |
chunked_value_stride[0], | |
window_overlap * chunked_value_stride[1], | |
chunked_value_stride[1], | |
chunked_value_stride[2], | |
) | |
chunked_value = padded_value.as_strided( | |
size=chunked_value_size, stride=chunked_value_stride) | |
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) | |
context = torch.einsum( | |
"bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) | |
return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) | |
def _get_global_attn_indices(is_index_global_attn): | |
"""compute global attn indices required throughout forward pass""" | |
# helper variable | |
num_global_attn_indices = is_index_global_attn.long().sum(dim=1) | |
# max number of global attn indices in batch | |
max_num_global_attn_indices = num_global_attn_indices.max() | |
# indices of global attn | |
is_index_global_attn_nonzero = is_index_global_attn.nonzero( | |
as_tuple=True) | |
# helper variable | |
is_local_index_global_attn = torch.arange( | |
max_num_global_attn_indices, device=is_index_global_attn.device | |
) < num_global_attn_indices.unsqueeze(dim=-1) | |
# location of the non-padding values within global attention indices | |
is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero( | |
as_tuple=True) | |
# location of the padding values within global attention indices | |
is_local_index_no_global_attn_nonzero = ( | |
is_local_index_global_attn == 0).nonzero(as_tuple=True) | |
return ( | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
) | |
def _concat_with_global_key_attn_probs( | |
self, | |
key_vectors, | |
query_vectors, | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
): | |
batch_size = key_vectors.shape[0] | |
# create only global key vectors | |
key_vectors_only_global = key_vectors.new_zeros( | |
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim | |
) | |
key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] | |
# (batch_size, seq_len, num_heads, max_num_global_attn_indices) | |
attn_probs_from_global_key = torch.einsum( | |
"blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) | |
attn_probs_from_global_key[ | |
is_local_index_no_global_attn_nonzero[0], :, :, is_local_index_no_global_attn_nonzero[1] | |
] = -10000.0 | |
return attn_probs_from_global_key | |
def _compute_attn_output_with_global_indices( | |
self, | |
value_vectors, | |
attn_probs, | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
): | |
batch_size = attn_probs.shape[0] | |
# cut local attn probs to global only | |
attn_probs_only_global = attn_probs.narrow( | |
-1, 0, max_num_global_attn_indices) | |
# get value vectors for global only | |
value_vectors_only_global = value_vectors.new_zeros( | |
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim | |
) | |
value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] | |
# use `matmul` because `einsum` crashes sometimes with fp16 | |
# attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) | |
# compute attn output only global | |
attn_output_only_global = torch.matmul( | |
attn_probs_only_global.transpose( | |
1, 2), value_vectors_only_global.transpose(1, 2) | |
).transpose(1, 2) | |
# reshape attn probs | |
attn_probs_without_global = attn_probs.narrow( | |
-1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices | |
).contiguous() | |
# compute attn output with global | |
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( | |
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size | |
) | |
return attn_output_only_global + attn_output_without_global | |
def _compute_global_attn_output_from_hidden( | |
self, | |
global_query_vectors, | |
global_key_vectors, | |
global_value_vectors, | |
max_num_global_attn_indices, | |
layer_head_mask, | |
is_local_index_global_attn_nonzero, | |
is_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
is_index_masked, | |
): | |
global_query_vectors = global_query_vectors.transpose(0, 1) | |
seq_len, batch_size, _, _ = global_query_vectors.shape | |
global_query_vectors_only_global = global_query_vectors.new_zeros( | |
max_num_global_attn_indices, batch_size, self.num_heads, self.head_dim) | |
global_query_vectors_only_global[is_local_index_global_attn_nonzero[::-1]] = global_query_vectors[ | |
is_index_global_attn_nonzero[::-1] | |
] | |
seq_len_q, batch_size_q, _, _ = global_query_vectors_only_global.shape | |
# print('global_query_vectors_only_global',global_query_vectors_only_global.shape) | |
global_query_vectors_only_global = global_query_vectors_only_global.view( | |
seq_len_q, batch_size_q, self.num_heads, self.head_dim) | |
global_key_vectors = global_key_vectors.transpose(0, 1) | |
global_value_vectors = global_value_vectors.transpose(0, 1) | |
# reshape | |
global_query_vectors_only_global = ( | |
global_query_vectors_only_global.contiguous() | |
.view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) | |
.transpose(0, 1) | |
) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim) | |
global_key_vectors = ( | |
global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, | |
self.head_dim).transpose(0, 1) | |
) # batch_size * self.num_heads, seq_len, head_dim) | |
global_value_vectors = ( | |
global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, | |
self.head_dim).transpose(0, 1) | |
) # batch_size * self.num_heads, seq_len, head_dim) | |
# compute attn scores | |
global_attn_scores = torch.bmm( | |
global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) | |
assert list(global_attn_scores.size()) == [ | |
batch_size * self.num_heads, | |
max_num_global_attn_indices, | |
seq_len, | |
], f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {global_attn_scores.size()}." | |
global_attn_scores = global_attn_scores.view( | |
batch_size, self.num_heads, max_num_global_attn_indices, seq_len) | |
global_attn_scores[ | |
is_local_index_no_global_attn_nonzero[0], :, is_local_index_no_global_attn_nonzero[1], : | |
] = -10000.0 | |
global_attn_scores = global_attn_scores.masked_fill( | |
is_index_masked[:, None, None, :], | |
-10000.0, | |
) | |
global_attn_scores = global_attn_scores.view( | |
batch_size * self.num_heads, max_num_global_attn_indices, seq_len) | |
# compute global attn probs | |
global_attn_probs_float = nn.functional.softmax( | |
global_attn_scores, dim=-1, dtype=torch.float32 | |
) # use fp32 for numerical stability | |
# apply layer head masking | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == ( | |
self.num_heads, | |
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view( | |
batch_size, self.num_heads, max_num_global_attn_indices, seq_len | |
) | |
global_attn_probs_float = global_attn_probs_float.view( | |
batch_size * self.num_heads, max_num_global_attn_indices, seq_len | |
) | |
global_attn_probs = nn.functional.dropout( | |
global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training | |
) | |
# global attn output | |
global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) | |
assert list(global_attn_output.size()) == [ | |
batch_size * self.num_heads, | |
max_num_global_attn_indices, | |
self.head_dim, | |
], f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {global_attn_output.size()}." | |
global_attn_probs = global_attn_probs.view( | |
batch_size, self.num_heads, max_num_global_attn_indices, seq_len) | |
global_attn_output = global_attn_output.view( | |
batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim | |
) | |
return global_attn_output, global_attn_probs | |
def get_extended_attention_mask(self, attention_mask, input_shape, device): | |
""" | |
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
Arguments: | |
attention_mask (:obj:`torch.Tensor`): | |
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
input_shape (:obj:`Tuple[int]`): | |
The shape of the input to the model. | |
device: (:obj:`torch.device`): | |
The device of the input to the model. | |
Returns: | |
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. | |
""" | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
ones = torch.ones_like(attention_mask) | |
zero = torch.zeros_like(attention_mask) | |
attention_mask = torch.where(attention_mask < 0, zero, ones) | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
# extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
class LongformerSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LongformerAttention(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.self = LongformerSelfAttention(config, layer_id) | |
self.output = LongformerSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - \ | |
len(heads) | |
self.self.all_head_size = self.self.attention_head_size * \ | |
self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
layer_head_mask=None, | |
is_index_masked=None, | |
is_index_global_attn=None, | |
is_global_attn=None, | |
output_attentions=False, | |
): | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
is_index_masked=is_index_masked, | |
is_index_global_attn=is_index_global_attn, | |
is_global_attn=is_global_attn, | |
output_attentions=output_attentions, | |
) | |
attn_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attn_output,) + self_outputs[1:] | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
class LongformerIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput | |
class LongformerOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LongformerLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.attention = LongformerAttention(config, layer_id) | |
self.intermediate = LongformerIntermediate(config) | |
self.output = LongformerOutput(config) | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
layer_head_mask=None, | |
is_index_masked=None, | |
is_index_global_attn=None, | |
is_global_attn=None, | |
output_attentions=False, | |
): | |
self_attn_outputs = self.attention( | |
hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
is_index_masked=is_index_masked, | |
is_index_global_attn=is_index_global_attn, | |
is_global_attn=is_global_attn, | |
output_attentions=output_attentions, | |
) | |
attn_output = self_attn_outputs[0] | |
outputs = self_attn_outputs[1:] | |
layer_output = apply_chunking_to_forward( | |
self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def ff_chunk(self, attn_output): | |
intermediate_output = self.intermediate(attn_output) | |
layer_output = self.output(intermediate_output, attn_output) | |
return layer_output | |
class LongformerEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList( | |
[LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
is_index_masked = attention_mask < 0 | |
is_index_global_attn = attention_mask > 0 | |
is_global_attn = is_index_global_attn.flatten().any().item() | |
all_hidden_states = () if output_hidden_states else None | |
# All local attentions. | |
all_attentions = () if output_attentions else None | |
all_global_attentions = () if (output_attentions and is_global_attn) else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
assert head_mask.size()[0] == ( | |
len(self.layer) | |
), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}." | |
for idx, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, is_global_attn, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
is_index_masked, | |
is_index_global_attn, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=head_mask[idx] if head_mask is not None else None, | |
is_index_masked=is_index_masked, | |
is_index_global_attn=is_index_global_attn, | |
is_global_attn=is_global_attn, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
# bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) | |
all_attentions = all_attentions + \ | |
(layer_outputs[1].transpose(1, 2),) | |
if is_global_attn: | |
# bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn | |
all_global_attentions = all_global_attentions + \ | |
(layer_outputs[2].transpose(2, 3),) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None | |
) | |
return LongformerBaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
global_attentions=all_global_attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPooler | |
class LongformerPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer | |
class LongformerLMHead(nn.Module): | |
"""Longformer Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
self.decoder.bias = self.bias | |
def forward(self, features, **kwargs): | |
x = self.dense(features) | |
x = gelu(x) | |
x = self.layer_norm(x) | |
# project back to size of vocabulary with bias | |
x = self.decoder(x) | |
return x | |
def _tie_weights(self): | |
# To tie those two weights if they get disconnected (on TPU or when the bias is resized) | |
self.bias = self.decoder.bias | |
class LongformerPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = LongformerConfig | |
base_model_prefix = "longformer" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_( | |
mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_( | |
mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
LONGFORMER_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the | |
model. Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
LONGFORMER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.LongformerTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to decide the attention given on each token, local attention or global attention. Tokens with global | |
attention attends to all other tokens, and all other tokens attend to them. This is important for | |
task-specific finetuning because it makes the model more flexible at representing the task. For example, | |
for classification, the <s> token should be given global attention. For QA, all question tokens should also | |
have global attention. Please refer to the `Longformer paper <https://arxiv.org/abs/2004.05150>`__ for more | |
details. Mask values selected in ``[0, 1]``: | |
- 0 for local attention (a sliding window attention), | |
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). | |
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class LongformerModel(LongformerPreTrainedModel): | |
""" | |
This class copied code from :class:`~transformers.RobertaModel` and overwrote standard self-attention with | |
longformer self-attention to provide the ability to process long sequences following the self-attention approach | |
described in `Longformer: the Long-Document Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, | |
Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global | |
attention to extend to long documents without the O(n^2) increase in memory and compute. | |
The self-attention module :obj:`LongformerSelfAttention` implemented here supports the combination of local and | |
global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and | |
dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. | |
Future release will add support for autoregressive attention, but the support for dilated attention requires a | |
custom CUDA kernel to be memory and compute efficient. | |
""" | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
if isinstance(config.attention_window, int): | |
assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" | |
assert config.attention_window > 0, "`config.attention_window` has to be positive" | |
config.attention_window = [ | |
config.attention_window] * config.num_hidden_layers # one value per layer | |
else: | |
assert len(config.attention_window) == config.num_hidden_layers, ( | |
"`len(config.attention_window)` should equal `config.num_hidden_layers`. " | |
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" | |
) | |
self.embeddings = LongformerEmbeddings(config) | |
self.encoder = LongformerEncoder(config) | |
self.pooler = LongformerPooler(config) if add_pooling_layer else None | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def _pad_to_window_size( | |
self, | |
input_ids: torch.Tensor, | |
attention_mask: torch.Tensor, | |
token_type_ids: torch.Tensor, | |
position_ids: torch.Tensor, | |
inputs_embeds: torch.Tensor, | |
pad_token_id: int, | |
): | |
"""A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" | |
# padding | |
attention_window = ( | |
self.config.attention_window | |
if isinstance(self.config.attention_window, int) | |
else max(self.config.attention_window) | |
) | |
assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" | |
input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape | |
batch_size, seq_len = input_shape[:2] | |
padding_len = (attention_window - seq_len % | |
attention_window) % attention_window | |
if padding_len > 0: | |
logger.info( | |
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " | |
f"`config.attention_window`: {attention_window}" | |
) | |
if input_ids is not None: | |
input_ids = nn.functional.pad( | |
input_ids, (0, padding_len), value=pad_token_id) | |
if position_ids is not None: | |
# pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings | |
position_ids = nn.functional.pad( | |
position_ids, (0, padding_len), value=pad_token_id) | |
if inputs_embeds is not None: | |
input_ids_padding = inputs_embeds.new_full( | |
(batch_size, padding_len), | |
self.config.pad_token_id, | |
dtype=torch.long, | |
) | |
inputs_embeds_padding = self.embeddings(input_ids_padding) | |
inputs_embeds = torch.cat( | |
[inputs_embeds, inputs_embeds_padding], dim=-2) | |
attention_mask = nn.functional.pad( | |
attention_mask, (0, padding_len), value=False | |
) # no attention on the padding tokens | |
token_type_ids = nn.functional.pad( | |
token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 | |
return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds | |
def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): | |
# longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) | |
# (global_attention_mask + 1) => 1 for local attention, 2 for global attention | |
# => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention | |
if attention_mask is not None: | |
attention_mask = attention_mask * (global_attention_mask + 1) | |
else: | |
# simply use `global_attention_mask` as `attention_mask` | |
# if no `attention_mask` is given | |
attention_mask = global_attention_mask + 1 | |
return attention_mask | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Returns: | |
Examples:: | |
>>> import torch | |
>>> from transformers import LongformerModel, LongformerTokenizer | |
>>> model = LongformerModel.from_pretrained('allenai/longformer-base-4096') | |
>>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') | |
>>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000) # long input document | |
>>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 | |
>>> attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to local attention | |
>>> global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to global attention to be deactivated for all tokens | |
>>> global_attention_mask[:, [1, 4, 21,]] = 1 # Set global attention to random tokens for the sake of this example | |
... # Usually, set global attention based on the task. For example, | |
... # classification: the <s> token | |
... # QA: question tokens | |
... # LM: potentially on the beginning of sentences and paragraphs | |
>>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) | |
>>> sequence_output = outputs.last_hidden_state | |
>>> pooled_output = outputs.pooler_output | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError( | |
"You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros( | |
input_shape, dtype=torch.long, device=device) | |
# merge `global_attention_mask` and `attention_mask` | |
if global_attention_mask is not None: | |
attention_mask = self._merge_to_attention_mask( | |
attention_mask, global_attention_mask) | |
if self.config.use_sparse_attention: | |
padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
pad_token_id=self.config.pad_token_id, | |
) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)[ | |
:, 0, 0, : | |
] | |
embedding_output = self.embeddings( | |
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler( | |
sequence_output) if self.pooler is not None else None | |
# undo padding | |
if self.config.use_sparse_attention: | |
if padding_len > 0: | |
# unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) | |
sequence_output = sequence_output[:, :-padding_len] | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return LongformerBaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
global_attentions=encoder_outputs.global_attentions, | |
) | |
class LongformerForMaskedLM(LongformerPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.longformer = LongformerModel(config, add_pooling_layer=False) | |
self.lm_head = LongformerLMHead(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): | |
Used to hide legacy arguments that have been deprecated. | |
Returns: | |
Examples:: | |
>>> import torch | |
>>> from transformers import LongformerForMaskedLM, LongformerTokenizer | |
>>> model = LongformerForMaskedLM.from_pretrained('allenai/longformer-base-4096') | |
>>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') | |
>>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000) # long input document | |
>>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 | |
>>> attention_mask = None # default is local attention everywhere, which is a good choice for MaskedLM | |
... # check ``LongformerModel.forward`` for more details how to set `attention_mask` | |
>>> outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) | |
>>> loss = outputs.loss | |
>>> prediction_logits = output.logits | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.longformer( | |
input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.lm_head(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct( | |
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return LongformerMaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
global_attentions=outputs.global_attentions, | |
) | |
class LongformerForSequenceClassification(LongformerPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.longformer = LongformerModel(config, add_pooling_layer=False) | |
self.classifier = LongformerClassificationHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if global_attention_mask is None: | |
logger.info("Initializing global attention on CLS token...") | |
global_attention_mask = torch.zeros_like(input_ids) | |
# global attention on cls token | |
global_attention_mask[:, 0] = 1 | |
outputs = self.longformer( | |
input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return LongformerSequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
global_attentions=outputs.global_attentions, | |
) | |
class LongformerClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, hidden_states, **kwargs): | |
# take <s> token (equiv. to [CLS]) | |
hidden_states = hidden_states[:, 0, :] | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.dense(hidden_states) | |
hidden_states = torch.tanh(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
output = self.out_proj(hidden_states) | |
return output | |
class LongformerForQuestionAnswering(LongformerPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.longformer = LongformerModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
Returns: | |
Examples:: | |
>>> from transformers import LongformerTokenizer, LongformerForQuestionAnswering | |
>>> import torch | |
>>> tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") | |
>>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") | |
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
>>> encoding = tokenizer(question, text, return_tensors="pt") | |
>>> input_ids = encoding["input_ids"] | |
>>> # default is local attention everywhere | |
>>> # the forward method will automatically set global attention on question tokens | |
>>> attention_mask = encoding["attention_mask"] | |
>>> outputs = model(input_ids, attention_mask=attention_mask) | |
>>> start_logits = outputs.start_logits | |
>>> end_logits = outputs.end_logits | |
>>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) | |
>>> answer_tokens = all_tokens[torch.argmax(start_logits) :torch.argmax(end_logits)+1] | |
>>> answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # remove space prepending space token | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if global_attention_mask is None: | |
if input_ids is None: | |
logger.warning( | |
"It is not possible to automatically generate the `global_attention_mask` because input_ids is None. Please make sure that it is correctly set." | |
) | |
else: | |
# set global attention on question tokens automatically | |
global_attention_mask = _compute_global_attention_mask( | |
input_ids, self.config.sep_token_id) | |
outputs = self.longformer( | |
input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return LongformerQuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
global_attentions=outputs.global_attentions, | |
) | |
class LongformerForTokenClassification(LongformerPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.longformer = LongformerModel(config, add_pooling_layer=False) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
1]``. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.longformer( | |
input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor( | |
loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct( | |
logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return LongformerTokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
global_attentions=outputs.global_attentions, | |
) | |
class LongformerForMultipleChoice(LongformerPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.longformer = LongformerModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
labels=None, | |
position_ids=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
:obj:`input_ids` above) | |
""" | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# set global attention on question tokens | |
if global_attention_mask is None and input_ids is not None: | |
logger.info("Initializing global attention on multiple choice...") | |
# put global attention on all tokens after `config.sep_token_id` | |
global_attention_mask = torch.stack( | |
[ | |
_compute_global_attention_mask( | |
input_ids[:, i], self.config.sep_token_id, before_sep_token=False) | |
for i in range(num_choices) | |
], | |
dim=1, | |
) | |
flat_input_ids = input_ids.view(-1, input_ids.size(-1) | |
) if input_ids is not None else None | |
flat_position_ids = position_ids.view( | |
-1, position_ids.size(-1)) if position_ids is not None else None | |
flat_token_type_ids = token_type_ids.view( | |
-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
flat_attention_mask = attention_mask.view( | |
-1, attention_mask.size(-1)) if attention_mask is not None else None | |
flat_global_attention_mask = ( | |
global_attention_mask.view(-1, global_attention_mask.size(-1)) | |
if global_attention_mask is not None | |
else None | |
) | |
flat_inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), | |
inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.longformer( | |
flat_input_ids, | |
position_ids=flat_position_ids, | |
token_type_ids=flat_token_type_ids, | |
attention_mask=flat_attention_mask, | |
global_attention_mask=flat_global_attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=flat_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return LongformerMultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
global_attentions=outputs.global_attentions, | |
) | |