Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, BartForConditionalGeneration, BartConfig | |
from pytorch_lightning import ( | |
LightningModule, | |
Trainer, | |
) | |
from pytorch_lightning.callbacks import LearningRateMonitor | |
from dataclasses import dataclass | |
import os | |
import argparse | |
import torch | |
import math | |
import time | |
from torch.utils.data._utils.collate import default_collate | |
from fengshen.data.data_utils.mask_utils import create_masked_lm_predictions | |
from fengshen.data.universal_datamodule import UniversalDataModule | |
from fengshen.utils import UniversalCheckpoint | |
from fengshen.models.model_utils import ( | |
get_total_steps, | |
configure_optimizers, | |
add_module_args, | |
) | |
import numpy as np | |
SHOW_DATA = False | |
class BartCollator: | |
''' | |
由input处理成samples,也就是最终模型的输入 | |
其中主要处理逻辑在__call__里 | |
包含text infilling和sentence shuffle任务 | |
''' | |
tokenizer: None # 分词 | |
max_seq_length: 512 | |
masked_lm_prob: 0.15 | |
permute_sentence_ratio: 1.0 | |
content_key: str = 'text' | |
def setup(self): | |
from fengshen.data.data_utils.sentence_split import ChineseSentenceSplitter | |
self.sentence_split = ChineseSentenceSplitter() | |
self.np_rng = np.random.RandomState(seed=((int(time.time()) % 2**32))) | |
inv_vocab = {v: k for k, v in self.tokenizer.vocab.items()} | |
self.vocab_id_list = list(inv_vocab.keys()) | |
self.vocab_id_to_token_dict = inv_vocab | |
import jieba_fast | |
self.zh_tokenizer = jieba_fast.lcut | |
seg_tokens = ['。', ';', ';', '!', '!', '?', '?'] | |
seg_token_ids = [] | |
for t in seg_tokens: | |
if t in self.tokenizer.vocab: | |
seg_token_ids.append(self.tokenizer.vocab[t]) | |
else: | |
print('seg_token "{}" not in vocab'.format(t)) | |
self.seg_token_ids = set(seg_token_ids) | |
def permute_sentences(self, source, full_stops, p=1.0): | |
# Tokens that are full stops, where the previous token is not | |
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2 | |
result = source.clone() | |
num_sentences = sentence_ends.size(0) | |
num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0) | |
substitutions = torch.randperm(num_sentences)[:num_to_permute] | |
ordering = torch.arange(0, num_sentences) | |
ordering[substitutions] = substitutions[torch.randperm(num_to_permute)] | |
# Ignore <bos> at start | |
index = 1 | |
for i in ordering: | |
sentence = source[(sentence_ends[i - 1] if i > 0 else 1): sentence_ends[i]] | |
result[index: index + sentence.size(0)] = sentence | |
index += sentence.size(0) | |
return result | |
def __call__(self, samples): | |
''' | |
samples: 一个sample长这样{"text": "hello world"} | |
''' | |
model_inputs = [] | |
for s in samples: | |
sentences = self.sentence_split.tokenize(s[self.content_key]) | |
tokenized_sentences = [self.tokenizer.convert_tokens_to_ids( | |
self.tokenizer.tokenize(sent)) for sent in sentences] | |
if len(tokenized_sentences) == 0: | |
print('find empty sentence') | |
continue | |
tokens = [self.tokenizer.cls_token_id] | |
for sent in tokenized_sentences: | |
for t in sent: | |
tokens.append(t) | |
if tokens[-1] != self.tokenizer.sep_token_id: | |
tokens.append(self.tokenizer.sep_token_id) | |
if len(tokens) > self.max_seq_length: | |
# 找到最后的一句话,如果有的话,尽量保证最后一句话的完整 | |
last_pos = self.max_seq_length - 1 | |
for i in range(self.max_seq_length - 1, 0, -1): | |
if tokens[i-1] in self.seg_token_ids: | |
last_pos = i | |
break | |
tokens = tokens[:last_pos] | |
tokens.append(self.tokenizer.sep_token_id) | |
tokens = torch.LongTensor(tokens) | |
full_stops = torch.any(torch.stack([torch.eq(tokens, aelem).logical_or_( | |
torch.eq(tokens, aelem)) for aelem in self.seg_token_ids], dim=0), dim=0) | |
assert (self.max_seq_length - | |
tokens.shape[0]) >= 0, (tokens.size(), tokens[-1], self.max_seq_length) | |
source, target = tokens, tokens.clone() | |
if self.permute_sentence_ratio > 0.0: | |
source = self.permute_sentences(source, full_stops, self.permute_sentence_ratio) | |
if self.masked_lm_prob > 0.0: | |
mask_prob = self.masked_lm_prob * 2 | |
max_predictions_per_seq = mask_prob * len(source) | |
(source, _, _, _, _) = create_masked_lm_predictions( | |
source.numpy(), self.vocab_id_list, self.vocab_id_to_token_dict, mask_prob, | |
self.tokenizer.cls_token_id, self.tokenizer.sep_token_id, self.tokenizer.mask_token_id, | |
max_predictions_per_seq, self.np_rng, | |
masking_style='bert', zh_tokenizer=self.zh_tokenizer) | |
# 合并[MASK] 因为这里用的是Bert的mask函数,Bert是按字mask的, | |
# 这里把连续的mask合并成一个MASK从而达到span mask的效果 | |
span_mask_souce = [] | |
for t in source: | |
# 如果是连续的多个mask,则跳过 | |
if len(span_mask_souce) > 0 \ | |
and t is self.tokenizer.mask_token_id \ | |
and span_mask_souce[-1] is self.tokenizer.mask_token_id: | |
continue | |
span_mask_souce.append(t) | |
source = torch.LongTensor(span_mask_souce) | |
assert (source >= 0).all() | |
# assert (source[1:-1] >= 1).all(), source | |
assert (source <= self.tokenizer.vocab_size).all() | |
assert source[0] == self.tokenizer.cls_token_id | |
assert source[-1] == self.tokenizer.sep_token_id | |
prev_output_tokens = torch.zeros_like(target) | |
# match the preprocessing in fairseq | |
prev_output_tokens[0] = self.tokenizer.sep_token_id | |
prev_output_tokens[1:] = target[:-1] | |
source_ = torch.full((self.max_seq_length,), | |
self.tokenizer.pad_token_id, dtype=torch.long) | |
source_[:source.shape[0]] = source | |
target_ = torch.full((self.max_seq_length,), -100, dtype=torch.long) | |
target_[:target.shape[0]] = target | |
prev_output_tokens_ = torch.full( | |
(self.max_seq_length,), self.tokenizer.pad_token_id, dtype=torch.long) | |
prev_output_tokens_[:prev_output_tokens.shape[0]] = prev_output_tokens | |
attention_mask = torch.full((self.max_seq_length,), 0, dtype=torch.long) | |
attention_mask[:source.shape[0]] = 1 | |
model_inputs.append({ | |
"input_ids": source_, | |
"labels": target_, | |
"decoder_input_ids": prev_output_tokens_, | |
"attention_mask": attention_mask, | |
}) | |
return default_collate(model_inputs) | |
class RandengBart(LightningModule): | |
def add_module_specific_args(parent_parser): | |
parser = parent_parser.add_argument_group('Randeng BART') | |
parser.add_argument('--masked_lm_prob', type=float, default=0.15) | |
parser.add_argument('--max_seq_length', type=int, default=512) | |
parser.add_argument('--sample_content_key', type=str, default='text') | |
parser.add_argument('--permute_sentence_ratio', type=str, default=1.0) | |
return parent_parser | |
def __init__(self, args, tokenizer, **kwargs) -> None: | |
super().__init__() | |
self.save_hyperparameters(args) | |
config = BartConfig.from_pretrained(args.model_path) | |
self.model = BartForConditionalGeneration(config) | |
self.tokenizer = tokenizer | |
def setup(self, stage) -> None: | |
if stage == 'fit': | |
self.total_steps = get_total_steps(self.trainer, self.hparams) | |
def configure_optimizers(self): | |
return configure_optimizers(self) | |
def detokenize(self, token_ids): | |
toks = self.tokenizer.convert_ids_to_tokens(token_ids) | |
return self.tokenizer.convert_tokens_to_string(toks) | |
def training_step(self, batch, batch_idx): | |
if self.trainer.global_rank == 0: | |
global SHOW_DATA | |
if not SHOW_DATA: | |
SHOW_DATA = True | |
print('source: {}'.format(batch['input_ids'][0])) | |
print('target: {}'.format(batch['labels'][0])) | |
print('decoder source: {}'.format(batch['decoder_input_ids'][0])) | |
print('source: {}'.format(self.detokenize(batch['input_ids'][0]))) | |
print('decoder source: {}'.format(self.detokenize(batch['decoder_input_ids'][0]))) | |
label_idx = batch['labels'][0] != -100 | |
print('target: {}'.format(self.detokenize( | |
batch['labels'][0][label_idx]))) | |
output = self.model(**batch) | |
acc = self.comput_metrix(output.logits, batch['labels']) | |
self.log('train_loss', output.loss, sync_dist=True) | |
self.log('train_acc', acc, sync_dist=True) | |
return output.loss | |
def comput_metrix(self, logits, labels): | |
label_idx = labels != -100 | |
labels = labels[label_idx] | |
logits = logits[label_idx].view(-1, logits.size(-1)) | |
y_pred = torch.argmax(logits, dim=-1) | |
y_pred = y_pred.view(size=(-1,)) | |
y_true = labels.view(size=(-1,)).float() | |
corr = torch.eq(y_pred, y_true) | |
acc = torch.sum(corr.float())/labels.shape[0] | |
return acc | |
def validation_step(self, batch, batch_idx): | |
output = self.model(**batch) | |
acc = self.comput_metrix(output.logits, batch['labels']) | |
self.log('val_loss', output.loss, sync_dist=True) | |
self.log('val_acc', acc, sync_dist=True) | |
def on_load_checkpoint(self, checkpoint) -> None: | |
# 兼容低版本lightning,低版本lightning从ckpt起来时steps数会被重置为0 | |
global_step_offset = checkpoint["global_step"] | |
if 'global_samples' in checkpoint: | |
self.consumed_samples = checkpoint['global_samples'] | |
self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset | |
if __name__ == '__main__': | |
args_parser = argparse.ArgumentParser() | |
args_parser = add_module_args(args_parser) | |
args_parser = UniversalDataModule.add_data_specific_args(args_parser) | |
args_parser = Trainer.add_argparse_args(args_parser) | |
args_parser = RandengBart.add_module_specific_args(args_parser) | |
args_parser = UniversalCheckpoint.add_argparse_args(args_parser) | |
args = args_parser.parse_args() | |
tokenizer = AutoTokenizer.from_pretrained(args.model_path) | |
collator = BartCollator( | |
tokenizer=tokenizer, | |
max_seq_length=args.max_seq_length, | |
masked_lm_prob=args.masked_lm_prob, | |
content_key=args.sample_content_key, | |
permute_sentence_ratio=args.permute_sentence_ratio, | |
) | |
# 准备一些额外参数 | |
collator.setup() | |
data_module = UniversalDataModule(tokenizer=tokenizer, args=args, collate_fn=collator) | |
module = RandengBart(args, tokenizer=tokenizer) | |
lr_monitor = LearningRateMonitor(logging_interval='step') | |
checkpoint_callback = UniversalCheckpoint(args) | |
# 做兼容,如果目录不存在的话把这个参数去掉,不然会报错 | |
if args.load_ckpt_path is not None and \ | |
not os.path.exists(args.load_ckpt_path): | |
print('--------warning no checkpoint found--------, remove args') | |
args.load_ckpt_path = None | |
trainer = Trainer.from_argparse_args(args, | |
callbacks=[ | |
lr_monitor, | |
checkpoint_callback]) | |
trainer.fit(module, data_module, ckpt_path=args.load_ckpt_path) | |