Spaces:
Runtime error
Runtime error
#SBATCH --job-name=slurm-test # create a short name for your job | |
#SBATCH --nodes=1 # node count | |
#SBATCH --ntasks=4 # total number of tasks across all nodes | |
#SBATCH --cpus-per-task=16 # cpu-cores per task (>1 if multi-threaded tasks) | |
#SBATCH --mem-per-cpu=8G # memory per cpu-core (4G is default) | |
#SBATCH --gres=gpu:4 # number of gpus per node | |
#SBATCH --mail-type=ALL # send email when job begins, ends or failed etc. | |
export TORCH_EXTENSIONS_DIR=/cognitive_comp/yangping/cache/torch_extendsions | |
BERT_NAME=bert-3.9B | |
TASK=tnews | |
TEXTA_NAME=sentence | |
LABEL_NAME=label | |
ID_NAME=id | |
BATCH_SIZE=16 | |
VAL_BATCH_SIZE=56 | |
ZERO_STAGE=2 | |
ROOT_PATH=cognitive_comp | |
DATA_DIR=/$ROOT_PATH/yangping/data/ChineseCLUE_DATA/${TASK}_public/ | |
PRETRAINED_MODEL_PATH=/$ROOT_PATH/yangping/pretrained_model/$BERT_NAME/ | |
CHECKPOINT_PATH=/$ROOT_PATH/yangping/checkpoints/fengshen-finetune/$TASK/ | |
DEFAULT_ROOT_DIR=/cognitive_comp/yangping/nlp/fengshen/fengshen/scripts/log/$TASK/$BERT_NAME/nograd | |
OUTPUT_PATH=/$ROOT_PATH/yangping/nlp/modelevaluation/output/${TASK}_predict.json | |
config_json="./ds_config.$SLURM_JOBID.json" | |
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() | |
# reduce_bucket_size: hidden_size*hidden_size | |
# stage3_prefetch_bucket_size: 0.9 * hidden_size * hidden_size | |
# stage3_param_persistence_threshold: 10 * hidden_size | |
cat <<EOT > $config_json | |
{ | |
"train_micro_batch_size_per_gpu": $BATCH_SIZE, | |
"steps_per_print": 100, | |
"gradient_clipping": 1.0, | |
"zero_optimization": { | |
"stage": 3, | |
"offload_optimizer": { | |
"device": "cpu", | |
"pin_memory": true | |
}, | |
"offload_param": { | |
"device": "cpu", | |
"pin_memory": true | |
}, | |
"overlap_comm": true, | |
"contiguous_gradients": true, | |
"sub_group_size": 1e9, | |
"reduce_bucket_size": 6553600, | |
"stage3_prefetch_bucket_size": 5898240, | |
"stage3_param_persistence_threshold": 25600, | |
"stage3_max_live_parameters": 1e9, | |
"stage3_max_reuse_distance": 1e9, | |
"stage3_gather_fp16_weights_on_model_save": true | |
}, | |
"optimizer": { | |
"type": "Adam", | |
"params": { | |
"lr": 1e-5, | |
"betas": [ | |
0.9, | |
0.95 | |
], | |
"eps": 1e-8, | |
"weight_decay": 1e-2 | |
} | |
}, | |
"scheduler": { | |
"type": "WarmupLR", | |
"params":{ | |
"warmup_min_lr": 5e-8, | |
"warmup_max_lr": 1e-5, | |
"warmup_num_steps": 400, | |
"warmup_type": "linear" | |
} | |
}, | |
"zero_allow_untested_optimizer": false, | |
"fp16": { | |
"enabled": true, | |
"loss_scale": 0, | |
"loss_scale_window": 1000, | |
"hysteresis": 2, | |
"min_loss_scale": 1 | |
}, | |
"activation_checkpointing": { | |
"partition_activations": false, | |
"contiguous_memory_optimization": false | |
}, | |
"wall_clock_breakdown": false | |
} | |
EOT | |
export PL_DEEPSPEED_CONFIG_PATH=$config_json | |
DATA_ARGS="\ | |
--data_dir $DATA_DIR \ | |
--train_data train.json \ | |
--valid_data dev.json \ | |
--test_data test.json \ | |
--train_batchsize $BATCH_SIZE \ | |
--valid_batchsize $VAL_BATCH_SIZE \ | |
--max_length 128 \ | |
--texta_name $TEXTA_NAME \ | |
--label_name $LABEL_NAME \ | |
--id_name $ID_NAME \ | |
" | |
MODEL_ARGS="\ | |
--learning_rate 0.00001 \ | |
--weight_decay 0.01 \ | |
--warmup 0.001 \ | |
--num_labels 15 \ | |
" | |
MODEL_CHECKPOINT_ARGS="\ | |
--monitor val_acc \ | |
--save_top_k 3 \ | |
--mode max \ | |
--every_n_train_steps 200 \ | |
--save_weights_only True \ | |
--dirpath $CHECKPOINT_PATH \ | |
--filename model-{epoch:02d}-{val_acc:.4f} \ | |
" | |
TRAINER_ARGS="\ | |
--max_epochs 7 \ | |
--gpus 4 \ | |
--strategy deepspeed_stage_3 \ | |
--precision 16 \ | |
--gradient_clip_val 0.1 \ | |
--check_val_every_n_epoch 1 \ | |
--val_check_interval 100 \ | |
--default_root_dir $DEFAULT_ROOT_DIR \ | |
" | |
options=" \ | |
--pretrained_model_path $PRETRAINED_MODEL_PATH \ | |
--output_save_path $OUTPUT_PATH \ | |
$DATA_ARGS \ | |
$MODEL_ARGS \ | |
$MODEL_CHECKPOINT_ARGS \ | |
$TRAINER_ARGS \ | |
" | |
DOCKER_PATH=/$ROOT_PATH/yangping/containers/pytorch21_06_py3_docker_image.sif | |
SCRIPT_PATH=/$ROOT_PATH/yangping/nlp/fengshen/fengshen/examples/finetune_classification.py | |
# python3 $SCRIPT_PATH $options | |
srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $DOCKER_PATH python3 $SCRIPT_PATH $options | |