File size: 9,184 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

import torch
import os
import argparse
import json
import pytorch_lightning as pl
from fengshen.models.model_utils import add_module_args
from fengshen.data.task_dataloader.task_datasets import AbstractCollator
from fengshen.data.universal_datamodule import UniversalDataModule
from fengshen.utils.universal_checkpoint import UniversalCheckpoint
from fengshen.utils.utils import chinese_char_tokenize
from torchmetrics.text.rouge import ROUGEScore
from pytorch_lightning import Trainer, loggers
from pytorch_lightning.callbacks import LearningRateMonitor
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import sys
sys.path.append('../../../')


# os.environ["CUDA_VISIBLE_DEVICES"] = '3,4'


class FinetuneSummary(pl.LightningModule):
    @staticmethod
    def add_model_specific_args(parent_args):
        parser = parent_args.add_argument_group('BaseModel')
        parser.add_argument('--rouge_keys', default='rougeL,rouge1,rouge2', type=str)
        return parent_args

    def __init__(self, args, tokenizer=None):
        super().__init__()
        self.save_hyperparameters(args)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(
            args.pretrained_model_path)
        self.tokenizer = tokenizer
        assert self.tokenizer, "tokenizer is None!"
        self.rouge_keys = tuple(args.rouge_keys.split(','))
        self.rouge_metric = ROUGEScore(rouge_keys=self.rouge_keys, normalizer=lambda x: x)

    def setup(self, stage) -> None:
        if stage == 'fit':
            train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()

            # Calculate total steps
            tb_size = self.hparams.train_batchsize * max(1, self.trainer.gpus)
            ab_size = self.trainer.accumulate_grad_batches * \
                float(self.trainer.max_epochs)
            self.total_steps = (
                len(train_loader.dataset) // tb_size) // ab_size
            print('total_steps is :', self.total_steps)

    def training_step(self, batch, batch_idx):
        output = self.model(input_ids=batch['input_ids'],
                            attention_mask=batch['attention_mask'], labels=batch['labels'])
        self.log('train_loss', output.loss, sync_dist=True)
        return output.loss

    def on_validation_start(self) -> None:
        # rm file at validation start
        prefix, ext = os.path.splitext(self.hparams.output_save_path)
        file_path_rank = '{}_{}{}'.format(
            prefix, self.trainer._accelerator_connector.cluster_environment.global_rank(), ext)
        if os.path.exists(file_path_rank):
            print('rm {}'.format(file_path_rank))
            os.remove(file_path_rank)

    def validation_step(self, batch, batch_idx):
        output = self.model(input_ids=batch['input_ids'],
                            attention_mask=batch['attention_mask'], labels=batch['labels'])
        generated_ids = self.model.generate(
            input_ids=batch['input_ids'],
            attention_mask=batch['attention_mask'],
            max_length=self.hparams.max_dec_length
        )

        preds = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
        labels = torch.where(batch['labels'] != -100, batch['labels'],
                             self.tokenizer.pad_token_id)
        labels = self.tokenizer.batch_decode(
            labels, skip_special_tokens=True, clean_up_tokenization_spaces=True)
        # save preds for every rank
        prefix, ext = os.path.splitext(self.hparams.output_save_path)
        file_path_rank = '{}_{}{}'.format(
            prefix, self.trainer._accelerator_connector.cluster_environment.global_rank(), ext)
        self.save_prediction_to_file(preds=preds, texts=batch['text'],
                                     summarys=batch['summary'], file_path=file_path_rank)
        # you need to split chinese char with space for rouge metric
        new_preds = [chinese_char_tokenize(p) for p in preds]
        new_labels = [chinese_char_tokenize(label) for label in labels]
        # update metric
        self.rouge_metric.update(preds=new_preds, target=new_labels)
        self.log('val_loss', output.loss, sync_dist=True)

    def validation_epoch_end(self, outputs):
        # compute metric for all process
        rouge_dict = self.rouge_metric.compute()
        # reset the metric after once validation
        self.rouge_metric.reset()
        for k, v in rouge_dict.items():
            self.log('val_{}'.format(k), v, sync_dist=True)
        if self.trainer._accelerator_connector.cluster_environment.global_rank() == 0:
            print('rouge:\n', rouge_dict)

    def on_save_checkpoint(self, checkpoint) -> None:
        if self.trainer._accelerator_connector.cluster_environment.global_rank() == 0:
            self.model.save_pretrained(os.path.join(
                self.trainer.checkpoint_callback.dirpath,
                'hf_pretrained_epoch{}_step{}'.format(checkpoint['epoch'], checkpoint['global_step'])))

    def save_prediction_to_file(self, preds, texts, summarys, file_path):
        with open(file_path, 'a', encoding='utf-8') as f:
            for idx, pred in enumerate(preds):
                text = texts[idx]
                summary = summarys[idx]
                tmp_result = dict()
                tmp_result['pred'] = pred
                tmp_result['label'] = summary
                tmp_result['text'] = text
                json_data = json.dumps(tmp_result, ensure_ascii=False)
                f.write(json_data + '\n')

    def predict_step(self, batch, batch_idx):
        # print(batch)
        texts = batch['text']
        # output summary and metrics
        generated_ids = self.model.generate(
            input_ids=batch['input_ids'],
            attention_mask=batch['attention_mask'],
            max_length=self.hparams.max_dec_length
        )
        preds = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
        labels = self.tokenizer.batch_decode(
            batch['labels'], skip_special_tokens=True, clean_up_tokenization_spaces=True)
        print(batch_idx, len(preds), len(labels))
        self.save_prediction_to_file(preds, texts, labels)

    def configure_optimizers(self):
        from fengshen.models.model_utils import configure_optimizers
        return configure_optimizers(self)


def main():
    total_parser = argparse.ArgumentParser("Summary Task")
    total_parser.add_argument('--do_eval_only',
                              action='store_true',
                              default=False)
    total_parser.add_argument('--pretrained_model_path',
                              default='google/mt5-small',
                              type=str)
    total_parser.add_argument('--output_save_path',
                              default='./predict.json',
                              type=str)
    total_parser.add_argument('--self_tokenizer',
                              action='store_true',
                              default=False)
    total_parser.add_argument('--max_enc_length', default=1024, type=int)
    total_parser.add_argument('--max_dec_length', default=256, type=int)
    total_parser.add_argument('--prompt', default='summarize:', type=str)
    # * Args for data preprocessing
    # from fengshen.data.task_dataloader.task_datasets import LCSTSDataModel
    total_parser = UniversalDataModule.add_data_specific_args(total_parser)
    # * Args for training
    total_parser = add_module_args(total_parser)
    total_parser = Trainer.add_argparse_args(total_parser)
    total_parser = UniversalCheckpoint.add_argparse_args(total_parser)
    total_parser = FinetuneSummary.add_model_specific_args(total_parser)
    # * Args for base model
    args = total_parser.parse_args()

    if args.self_tokenizer:
        from fengshen.examples.pegasus.tokenizers_pegasus import PegasusTokenizer
        tokenizer = PegasusTokenizer.from_pretrained(args.pretrained_model_path)
    else:
        tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path, use_fast=False)
    collator = AbstractCollator(tokenizer, args.max_enc_length,
                                args.max_dec_length, args.prompt)
    data_model = UniversalDataModule(tokenizer=tokenizer, args=args, collate_fn=collator)
    model = FinetuneSummary(args, tokenizer)
    if not args.do_eval_only:
        lr_monitor = LearningRateMonitor(logging_interval='step')
        logger = loggers.TensorBoardLogger(save_dir=os.path.join(
            args.default_root_dir, 'log/'))
        checkpoint_callback = UniversalCheckpoint(args)
        trainer = Trainer.from_argparse_args(args,
                                             logger=logger,
                                             callbacks=[lr_monitor,
                                                        checkpoint_callback]
                                             )
        trainer.fit(model, data_model)
    else:
        trainer = Trainer.from_argparse_args(args)
        # trainer.predict(model, data_model)
        trainer.validate(model, data_model)


if __name__ == '__main__':
    main()