File size: 3,591 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/bin/bash
#SBATCH --job-name=randeng_t5_77M_summary_predict
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --gres=gpu:2               # number of gpus
#SBATCH --cpus-per-task=30
#SBATCH -o %x-%j.log

set -x -e

echo "START TIME: $(date)"
MODEL_NAME=randeng_t5_77M_summary_predict
MICRO_BATCH_SIZE=16
ROOT_DIR=/cognitive_comp/ganruyi/experiments/${MODEL_NAME}
if [ ! -d ${ROOT_DIR} ];then
  mkdir ${ROOT_DIR}
  echo ${ROOT_DIR} created!!!!!!!!!!!!!!
else
  echo ${ROOT_DIR} exist!!!!!!!!!!!!!!!
fi

output_save_path=$ROOT_DIR/randeng_t5_77M_predict_lcsts.json
if [ -f ${output_save_path} ];then
  echo ${output_save_path} exist, rm it!!!!!!!!!!!!!!!!!
  rm ${output_save_path}
fi

ZERO_STAGE=1

config_json="${ROOT_DIR}/ds_config.${MODEL_NAME}.json"

# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE},
  "steps_per_print": 100,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE,
    "contiguous_gradients": false,
    "overlap_comm": true,
    "reduce_scatter": true,
    "reduce_bucket_size": 50000000,
    "allgather_bucket_size": 500000000
  },
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": 1e-4,
      "betas": [
        0.9,
        0.95
      ],
      "eps": 1e-8,
      "weight_decay": 5e-2
    }
  },
  "scheduler": {
    "type": "WarmupLR",
    "params":{
      "warmup_min_lr": 5e-6,
      "warmup_max_lr": 1e-4
    }
  },
  "zero_allow_untested_optimizer": false,
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "activation_checkpointing": {
    "partition_activations": false,
    "contiguous_memory_optimization": false
  },
  "wall_clock_breakdown": false
}
EOT

export PL_DEEPSPEED_CONFIG_PATH=$config_json
export TORCH_EXTENSIONS_DIR=/cognitive_comp/ganruyi/tmp/torch_extendsions
export MASTER_PORT=$[RANDOM%10000+50000]

# --strategy deepspeed_stage_${ZERO_STAGE} \
TRAINER_ARGS="
    --max_epochs 1 \
    --gpus 2 \
    --num_nodes 1 \
    --strategy ddp \
    --default_root_dir $ROOT_DIR \
    --dirpath $ROOT_DIR/ckpt \
    --save_top_k 3 \
    --monitor train_loss \
    --mode min \
    --save_last \
    --every_n_train_steps 0 \
"
DATA_DIR=/cognitive_comp/ganruyi/data_datasets_LCSTS_LCSTS/
prompt="summary:"
DATA_ARGS="
    --datasets_name lcsts \
    --num_workers 30 \
    --train_batchsize $MICRO_BATCH_SIZE \
    --val_batchsize $MICRO_BATCH_SIZE \
    --test_batchsize $MICRO_BATCH_SIZE \
    --max_enc_length 128 \
    --max_dec_length 64 \
    --val_datasets_field val \
    --prompt $prompt \
"
# --prompt $prompt \
# --pretrained_model_path /cognitive_comp/ganruyi/experiments/randeng_t5_77M_summary/ckpt/hf_pretrained_epoch1_step75019 \

MODEL_ARGS="
    --pretrained_model_path /cognitive_comp/gaoxinyu/pretrained_model/bart-759M \
    --output_save_path $ROOT_DIR/randeng_t5_77M_predict_lcsts.json \
    --learning_rate 1e-4 \
    --weight_decay 0.1 \
    --precision 16 \
    --warmup 0.01 \
    --do_eval_only \
    --max_dec_length 32 \
"

SCRIPTS_PATH=/cognitive_comp/ganruyi/Fengshenbang-LM/fengshen/examples/summary/seq2seq_summary.py
SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif

export CMD=" \
    $SCRIPTS_PATH \
    $TRAINER_ARGS \
    $MODEL_ARGS \
    $DATA_ARGS \
    "
echo $CMD
source activate base
# srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'
python $CMD