Spaces:
Runtime error
Runtime error
File size: 10,174 Bytes
50f0fbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from fengshen.data.task_dataloader.task_datasets import LCSTSDataModel
from transformers import T5Tokenizer, MT5ForConditionalGeneration
from transformers.optimization import get_linear_schedule_with_warmup
from pytorch_lightning import Trainer, loggers
from pytorch_lightning.callbacks import ModelCheckpoint
from transformers import AutoTokenizer
import pytorch_lightning as pl
import json
import argparse
import torch
import os
import sys
sys.path.append('./')
# os.environ["CUDA_VISIBLE_DEVICES"] = '4,5,6,7'
def test():
tokenizer = T5Tokenizer.from_pretrained("google/mt5-small")
article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
summary = "Weiter Verhandlung in Syrien."
article = "日前,方舟子发文直指林志颖旗下爱碧丽推销假保健品,引起哗然。调查发现,爱碧丽没有自己的生产加工厂。 \
其胶原蛋白饮品无核心研发,全部代工生产。号称有“逆生长”功效的爱碧丽“梦幻奇迹限量组”售价>高达1080元,实际成本仅为每瓶4元!"
summary = "林志颖公司疑涉虚假营销无厂房无研发"
inputs = tokenizer(article, rturn_tensors="pt")
tt = tokenizer.encode_plus(summary, max_length=64,
padding='max_length', truncation='longest_first')
print('tt:', tt)
print('inputs:', inputs)
with tokenizer.as_target_tokenizer():
labels = tokenizer(summary, return_tensors="pt")
print('labels:', labels)
print('origin labels:', tokenizer.decode(labels['input_ids'][0]))
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
# outputs = model(input_ids=inputs["input_ids"], labels=labels["input_ids"])
# print(outputs.keys())
# evaluation
model.eval()
generated_ids = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
preds = [tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=True) for g in generated_ids]
print(preds)
class MT5FinetuneSummaryModelCheckpoint:
@staticmethod
def add_argparse_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--monitor', default='train_loss', type=str)
parser.add_argument('--mode', default='min', type=str)
parser.add_argument('--dirpath', default='./ckpt/', type=str)
parser.add_argument(
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str)
parser.add_argument('--save_last', action='store_true', default=True)
parser.add_argument('--save_top_k', default=3, type=float)
parser.add_argument('--every_n_train_steps', default=100, type=float)
parser.add_argument('--save_weights_only', default=True, type=bool)
return parent_args
def __init__(self, args):
self.callbacks = ModelCheckpoint(monitor=args.monitor,
save_top_k=args.save_top_k,
mode=args.mode,
every_n_train_steps=args.every_n_train_steps,
save_weights_only=args.save_weights_only,
dirpath=args.dirpath,
filename=args.filename,
save_last=args.save_last)
class MT5FinetuneSummary(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--learning_rate', default=1e-4, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--warmup', default=0.01, type=float)
return parent_args
def __init__(self, args, num_data):
super().__init__()
self.args = args
self.num_data = num_data
print('num_data:', num_data)
self.model = MT5ForConditionalGeneration.from_pretrained(args.pretrained_model_path)
def setup(self, stage) -> None:
if stage == 'fit':
num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0
self.total_step = int(self.trainer.max_epochs * self.num_data /
(max(1, num_gpus) * self.trainer.accumulate_grad_batches))
print('Total training step:', self.total_step)
def training_step(self, batch, batch_idx):
output = self.model(input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'], labels=batch['labels'])
# output = self.model(input_ids=batch['input_ids'], labels=batch['labels'])
# acc = self.comput_metrix(output.logits, batch['labels'])
self.log('train_loss', output.loss)
return output.loss
def comput_metrix(self, logits, labels):
y_pred = torch.argmax(logits, dim=-1)
y_pred = y_pred.view(size=(-1,))
y_true = labels.view(size=(-1,)).float()
corr = torch.eq(y_pred, y_true)
acc = torch.sum(corr.float())/labels.size()[0]
return acc
def validation_step(self, batch, batch_idx):
output = self.model(input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'], labels=batch['labels'])
# output = self.model(input_ids=batch['input_ids'], labels=batch['labels'])
# acc = self.comput_metrix(output.logits, batch['labels'])
self.log('val_loss', output.loss)
# self.log('val_acc', acc)
def predict_step(self, batch, batch_idx):
text = batch['text']
summary = batch['summary']
generated_ids = self.model.generate(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
max_length=self.args.max_dec_length
)
return {"pred": generated_ids, "text": text, "summary": summary}
def configure_optimizers(self):
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
paras = list(
filter(lambda p: p[1].requires_grad, self.named_parameters()))
paras = [{
'params':
[p for n, p in paras if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay
}, {
'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, int(self.total_step * self.args.warmup),
self.total_step)
return [{
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'step',
'frequency': 1
}
}]
def save_test(data, args, data_model):
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path)
with open(os.path.join(args.output_save_path), 'w', encoding='utf-8') as f:
for _, batch in enumerate(data):
texts = batch['text']
summarys = batch['summary']
preds = batch['pred']
for idx, pred_ids in enumerate(preds):
text = texts[idx]
summary = summarys[idx]
tmp_result = dict()
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for g in pred_ids]
tmp_result['summary'] = ''.join(preds)
tmp_result['label'] = summary
tmp_result['origin_text'] = text
json_data = json.dumps(tmp_result, ensure_ascii=False)
f.write(json_data+'\n')
print('save the result to '+args.output_save_path)
def main():
total_parser = argparse.ArgumentParser("Summary Task")
total_parser.add_argument('--do_eval_only', action='store_true', default=False)
total_parser.add_argument('--pretrained_model_path', default='google/mt5-small', type=str)
total_parser.add_argument('--output_save_path', default='./predict.json', type=str)
# * Args for data preprocessing
total_parser = LCSTSDataModel.add_data_specific_args(total_parser)
# * Args for training
total_parser = Trainer.add_argparse_args(total_parser)
total_parser = MT5FinetuneSummaryModelCheckpoint.add_argparse_args(total_parser)
total_parser = MT5FinetuneSummary.add_model_specific_args(total_parser)
# * Args for base model
args = total_parser.parse_args()
data_model = LCSTSDataModel(args)
if not args.do_eval_only:
model = MT5FinetuneSummary(args, len(data_model.train_dataloader()))
checkpoint_callback = MT5FinetuneSummaryModelCheckpoint(args).callbacks
logger = loggers.TensorBoardLogger(save_dir=os.path.join(
args.default_root_dir, 'log/'), name='mt5_summary')
trainer = Trainer.from_argparse_args(args,
logger=logger,
callbacks=[checkpoint_callback]
)
trainer.fit(model, data_model)
else:
trainer = Trainer.from_argparse_args(args)
model = MT5FinetuneSummary.load_from_checkpoint(
args.resume_from_checkpoint, args=args, num_data=len(data_model.predict_dataloader()))
result = trainer.predict(model, data_model)
if torch.distributed.get_rank() == 0:
save_test(result, args, data_model)
if __name__ == '__main__':
main()
# test()
'''
python examples/mt5_summary.py --gpus=1 --test_data=test_public.jsonl
--default_root_dir=/cognitive_comp/ganruyi/fengshen/mt5_summary/eval
--do_eval_only
--resume_from_checkpoint=/cognitive_comp/ganruyi/fengshen/mt5_summary/ckpt/model-epoch=01-train_loss=1.9166.ckpt
--strategy=ddp
'''
|