Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from embedding import get_device, get_model_and_processor, to_embedding
|
7 |
+
from datasets import Dataset, load_dataset
|
8 |
+
|
9 |
+
def initialize_model():
|
10 |
+
device = get_device()
|
11 |
+
model, processor = get_model_and_processor("patrickjohncyh/fashion-clip", device)
|
12 |
+
ref_dataset = load_dataset("HadrienCr/embeddeDior", split="train")
|
13 |
+
ref_dataset = ref_dataset.add_faiss_index("embeddings")
|
14 |
+
return model, processor, ref_dataset, device
|
15 |
+
|
16 |
+
def search(
|
17 |
+
image: np.ndarray,
|
18 |
+
reference_dataset: Dataset,
|
19 |
+
model,
|
20 |
+
processor,
|
21 |
+
device: str,
|
22 |
+
num_neighbors: int = 4,
|
23 |
+
):
|
24 |
+
"""a function that embeds a new image and returns the most probable results"""
|
25 |
+
scores, retrieved_examples = reference_dataset.get_nearest_examples(
|
26 |
+
"embeddings",
|
27 |
+
to_embedding(np.expand_dims(image, 0), processor, model, device),
|
28 |
+
k=num_neighbors,
|
29 |
+
)
|
30 |
+
return retrieved_examples
|
31 |
+
|
32 |
+
def process_image(image, num_results, remove_bg, model, processor, ref_dataset, device):
|
33 |
+
if image is None:
|
34 |
+
return [] # Return an empty list if no image is provided
|
35 |
+
|
36 |
+
# Ensure the input image is a numpy array
|
37 |
+
if isinstance(image, Image.Image):
|
38 |
+
image = np.array(image)
|
39 |
+
|
40 |
+
# Handle background removal
|
41 |
+
if remove_bg:
|
42 |
+
from rembg import remove
|
43 |
+
image = remove(image)[:,:,0:3]
|
44 |
+
# Perform the search
|
45 |
+
results = search(
|
46 |
+
image,
|
47 |
+
ref_dataset,
|
48 |
+
model,
|
49 |
+
processor,
|
50 |
+
device,
|
51 |
+
num_neighbors=num_results
|
52 |
+
)
|
53 |
+
images = results['image']
|
54 |
+
paths = results['path']
|
55 |
+
# Prepare the output
|
56 |
+
output_images = []
|
57 |
+
|
58 |
+
for img, path in zip(images, paths):
|
59 |
+
output_images.append((np.array(img), os.path.basename(path)))
|
60 |
+
|
61 |
+
return output_images # Return the list of tuples
|
62 |
+
|
63 |
+
|
64 |
+
def main():
|
65 |
+
print("Initializing model and loading reference dataset...")
|
66 |
+
model, processor, ref_dataset, device = initialize_model()
|
67 |
+
print("Initialization complete!")
|
68 |
+
|
69 |
+
# Path to the examples folder
|
70 |
+
examples_folder = "examples/"
|
71 |
+
example_files = [
|
72 |
+
os.path.join(examples_folder, fname)
|
73 |
+
for fname in os.listdir(examples_folder)
|
74 |
+
if fname.lower().endswith(('png', 'jpg', 'jpeg'))
|
75 |
+
]
|
76 |
+
|
77 |
+
with gr.Blocks() as demo:
|
78 |
+
gr.Markdown("# Image Retrieval System")
|
79 |
+
gr.Markdown("Upload an image to find similar images in the reference dataset.")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column(scale=1):
|
83 |
+
input_image = gr.Image(
|
84 |
+
label="Upload Image",
|
85 |
+
type="pil" # Changed to PIL format
|
86 |
+
)
|
87 |
+
num_results = gr.Slider(
|
88 |
+
minimum=1,
|
89 |
+
maximum=10,
|
90 |
+
value=5,
|
91 |
+
step=1,
|
92 |
+
label="Number of results"
|
93 |
+
)
|
94 |
+
remove_bg = gr.Checkbox(label="Remove Background")
|
95 |
+
submit_btn = gr.Button("Search")
|
96 |
+
|
97 |
+
with gr.Column(scale=2):
|
98 |
+
gallery = gr.Gallery(
|
99 |
+
label="Retrieved Images",
|
100 |
+
show_label=True,
|
101 |
+
columns=3,
|
102 |
+
object_fit="contain"
|
103 |
+
)
|
104 |
+
|
105 |
+
# Add the Examples component
|
106 |
+
gr.Examples(
|
107 |
+
examples=example_files,
|
108 |
+
inputs=input_image,
|
109 |
+
label="Example Images"
|
110 |
+
)
|
111 |
+
|
112 |
+
submit_btn.click(
|
113 |
+
fn=lambda img, num, bg: process_image(img, num, bg, model, processor, ref_dataset, device),
|
114 |
+
inputs=[input_image, num_results, remove_bg],
|
115 |
+
outputs=gallery
|
116 |
+
)
|
117 |
+
|
118 |
+
demo.launch(share=True)
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
main()
|