Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,11 @@ mpl.rcParams.update(mpl.rcParamsDefault)
|
|
23 |
df = pd.read_parquet('virus_ds.parquet')
|
24 |
virus = df['Organism_Name'].unique()
|
25 |
virus = {v: v for v in virus}
|
|
|
|
|
|
|
|
|
|
|
26 |
loss_typesss = pd.read_csv("training_data_5.csv")['loss_type'].unique().tolist()
|
27 |
model_typesss = pd.read_csv("training_data_5.csv")['model_type'].unique().tolist()
|
28 |
param_typesss = pd.read_csv("training_data_5.csv")['param_type'].unique().tolist()
|
@@ -76,17 +81,20 @@ with ui.navset_card_tab(id="tab"):
|
|
76 |
ui.panel_title("How does sequence distribution vary across sequence length?")
|
77 |
with ui.layout_columns():
|
78 |
with ui.card():
|
79 |
-
ui.input_selectize("virus_selector_1", "Select your viruses:",
|
80 |
with ui.card():
|
81 |
ui.input_slider(
|
82 |
-
"basepair","Select basepair",0,
|
83 |
)
|
84 |
|
85 |
@render.plot()
|
86 |
def plot_distro():
|
87 |
-
df = pd.read_parquet("
|
88 |
-
df = df
|
89 |
-
|
|
|
|
|
|
|
90 |
return plot_distrobutions(grouped, grouped.index, input.basepair())
|
91 |
|
92 |
with ui.nav_panel("Viral Microstructure"):
|
|
|
23 |
df = pd.read_parquet('virus_ds.parquet')
|
24 |
virus = df['Organism_Name'].unique()
|
25 |
virus = {v: v for v in virus}
|
26 |
+
df_new = pd.read_parquet("virus.parquet")
|
27 |
+
df_new = df_new.groupby('organism_name').apply(lambda x: x.head(100) if len(x) > 10 else None).reset_index(drop=True)
|
28 |
+
filter_species = df_new.organism_name.value_counts().reset_index()[df_new.organism_name.value_counts().reset_index()['count'] > 40 ]['organism_name'][1:].tolist()
|
29 |
+
del df_new
|
30 |
+
virus_new = {v: v for v in filter_species}
|
31 |
loss_typesss = pd.read_csv("training_data_5.csv")['loss_type'].unique().tolist()
|
32 |
model_typesss = pd.read_csv("training_data_5.csv")['model_type'].unique().tolist()
|
33 |
param_typesss = pd.read_csv("training_data_5.csv")['param_type'].unique().tolist()
|
|
|
81 |
ui.panel_title("How does sequence distribution vary across sequence length?")
|
82 |
with ui.layout_columns():
|
83 |
with ui.card():
|
84 |
+
ui.input_selectize("virus_selector_1", "Select your viruses:", virus_new, multiple=True, selected=None)
|
85 |
with ui.card():
|
86 |
ui.input_slider(
|
87 |
+
"basepair","Select basepair",0, 10000, 15
|
88 |
)
|
89 |
|
90 |
@render.plot()
|
91 |
def plot_distro():
|
92 |
+
df = pd.read_parquet("virus.parquet")
|
93 |
+
df = df.groupby('organism_name').apply(lambda x: x.head(100) if len(x) > 10 else None).reset_index(drop=True)
|
94 |
+
filter_species = df.organism_name.value_counts().reset_index()[df.organism_name.value_counts().reset_index()['count'] > 40 ]['organism_name'][1:].tolist()
|
95 |
+
|
96 |
+
df = df[df["organism_name"].isin(input.virus_selector_1())]
|
97 |
+
grouped = df.groupby("organism_name")["sequence"].apply(list)
|
98 |
return plot_distrobutions(grouped, grouped.index, input.basepair())
|
99 |
|
100 |
with ui.nav_panel("Viral Microstructure"):
|