Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -894,79 +894,79 @@ with ui.navset_card_tab(id="tab"):
|
|
| 894 |
# with ui.nav_panel("Viral Model"):
|
| 895 |
# gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
| 896 |
|
| 897 |
-
with ui.nav_panel("Viral Microstructure"):
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
|
| 912 |
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
with ui.nav_panel("Viral Model Training"):
|
| 940 |
-
|
| 941 |
-
|
| 942 |
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
|
| 971 |
|
| 972 |
# @render.image
|
|
|
|
| 894 |
# with ui.nav_panel("Viral Model"):
|
| 895 |
# gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
| 896 |
|
| 897 |
+
# with ui.nav_panel("Viral Microstructure"):
|
| 898 |
+
# ui.page_opts(fillable=True)
|
| 899 |
+
# ui.panel_title("Kmer Distribution")
|
| 900 |
+
# with ui.layout_columns():
|
| 901 |
+
# with ui.card():
|
| 902 |
+
# ui.input_slider("kmer", "kmer", 0, 10, 5)
|
| 903 |
+
# ui.input_slider("top_k", "top:", 0, 1000, 15)
|
| 904 |
|
| 905 |
+
# ui.input_selectize(
|
| 906 |
+
# "plot_type",
|
| 907 |
+
# "Select metric:",
|
| 908 |
+
# ["percentage", "count"],
|
| 909 |
+
# multiple=False,
|
| 910 |
+
# )
|
| 911 |
|
| 912 |
|
| 913 |
+
# @render.plot
|
| 914 |
+
# def plot():
|
| 915 |
+
# df = pd.read_csv('kmers.csv')
|
| 916 |
+
# k = input.kmer()
|
| 917 |
+
# top_k = input.top_k()
|
| 918 |
+
# fig = None
|
| 919 |
+
# if input.plot_type() == "count":
|
| 920 |
+
# df = df[df['k'] == k]
|
| 921 |
+
# df = df.head(top_k)
|
| 922 |
+
# fig, ax = plt.subplots()
|
| 923 |
+
# ax.bar(df['kmer'], df['count'])
|
| 924 |
+
# ax.set_title(f"Most common {k}-mers")
|
| 925 |
+
# ax.set_xlabel("K-mer")
|
| 926 |
+
# ax.set_ylabel("Count")
|
| 927 |
+
# ax.set_xticklabels(df['kmer'], rotation=90)
|
| 928 |
+
# if input.plot_type() == "percentage":
|
| 929 |
+
# df = df[df['k'] == k]
|
| 930 |
+
# df = df.head(top_k)
|
| 931 |
+
# fig, ax = plt.subplots()
|
| 932 |
+
# ax.bar(df['kmer'], df['percent']*100)
|
| 933 |
+
# ax.set_title(f"Most common {k}-mers")
|
| 934 |
+
# ax.set_xlabel("K-mer")
|
| 935 |
+
# ax.set_ylabel("Percentage")
|
| 936 |
+
# ax.set_xticklabels(df['kmer'], rotation=90)
|
| 937 |
+
# return fig
|
| 938 |
+
|
| 939 |
+
# with ui.nav_panel("Viral Model Training"):
|
| 940 |
+
# ui.page_opts(fillable=True)
|
| 941 |
+
# ui.panel_title("Does context size matter for a nucleotide model?")
|
| 942 |
|
| 943 |
+
# def plot_loss_rates(df, type):
|
| 944 |
+
# # interplot each column to be same number of points
|
| 945 |
+
# x = np.linspace(0, 1, 1000)
|
| 946 |
+
# loss_rates = []
|
| 947 |
+
# labels = ['32', '64', '128', '256', '512', '1024']
|
| 948 |
+
# #drop the column step
|
| 949 |
+
# df = df.drop(columns=['Step'])
|
| 950 |
+
# for col in df.columns:
|
| 951 |
+
# y = df[col].dropna().astype('float', errors = 'ignore').dropna().values
|
| 952 |
+
# f = interp1d(np.linspace(0, 1, len(y)), y)
|
| 953 |
+
# loss_rates.append(f(x))
|
| 954 |
+
# fig, ax = plt.subplots()
|
| 955 |
+
# for i, loss_rate in enumerate(loss_rates):
|
| 956 |
+
# ax.plot(x, loss_rate, label=labels[i])
|
| 957 |
+
# ax.legend()
|
| 958 |
+
# ax.set_title(f'Loss rates for a {type} parameter model')
|
| 959 |
+
# ax.set_xlabel('Training steps')
|
| 960 |
+
# ax.set_ylabel('Loss rate')
|
| 961 |
+
# return fig
|
| 962 |
|
| 963 |
+
# @render.plot
|
| 964 |
+
# def plot():
|
| 965 |
+
# fig = None
|
| 966 |
+
# df = pd.read_csv('14m.csv')
|
| 967 |
+
# mpl.rcParams.update(mpl.rcParamsDefault)
|
| 968 |
+
# fig = plot_loss_rates(df, '14M')
|
| 969 |
+
# return fig
|
| 970 |
|
| 971 |
|
| 972 |
# @render.image
|