Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering | |
def load_qa_model(): | |
model_name = "google/mobilebert-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) | |
return qa_pipeline | |
qa = load_qa_model() | |
def process_batch(data): | |
results = [] | |
for index, row in data.iterrows(): | |
answer = qa(question=row['Question'], context=row['Article']) | |
results.append({ | |
'Question': row['Question'], | |
'Article': row['Article'], | |
'Answer': answer['answer'], | |
'Score': answer['score'] | |
}) | |
return results | |
st.title("Batch Question Answering App") | |
uploaded_file = st.file_uploader("Upload a CSV file", type="csv") | |
if uploaded_file is not None: | |
data = pd.read_csv(uploaded_file) | |
st.write("Uploaded file:") | |
st.write(data) | |
if st.button("Process Batch"): | |
with st.spinner("Processing Batch..."): | |
results = process_batch(data) | |
st.write("Batch Processing Results:") | |
for result in results: | |
st.write("Question:", result['Question']) | |
st.write("Article:", result['Article']) | |
st.write("Answer:", result['Answer']) | |
st.write("Score:", result['Score']) | |
st.write("------") | |