Spaces:
Runtime error
Runtime error
File size: 30,169 Bytes
bd74530 3c0111d bd74530 74b2bf0 3c0111d bd74530 9d03b07 ed9c55f 9d03b07 ed9c55f 9d03b07 d4e43d6 bd74530 d4e43d6 283b861 d4e43d6 46dd33b d4e43d6 4e064ff d4e43d6 ed9c55f 98d4b40 6631a55 d4e43d6 98d4b40 d4e43d6 74b2bf0 db24268 980b6a3 db24268 d4e43d6 bd74530 9d03b07 74b2bf0 bd74530 fee32de db24268 bd74530 fee32de fab61bd fee32de bd74530 283b861 46dd33b 4e064ff 98d4b40 fee32de ed9c55f fee32de ed9c55f fee32de bd74530 fee32de 46dd33b fee32de 74b2bf0 bd74530 74b2bf0 46dd33b 3c0111d fee32de 46dd33b 6631a55 46dd33b 98d4b40 46dd33b d4e43d6 74b2bf0 46dd33b 6631a55 46dd33b 6631a55 46dd33b fee32de 6631a55 d4e43d6 db24268 98d4b40 db24268 98d4b40 fee32de 98d4b40 fee32de 98d4b40 fee32de 74b2bf0 fee32de 6631a55 fee32de 6273bce fee32de ed9c55f fee32de ed9c55f db24268 98d4b40 db24268 3c0111d fee32de 46e097d 6273bce 46e097d 6273bce ed9c55f 6273bce 4e064ff fee32de 46e097d 3c0111d 9f8916a 3c0111d fee32de 46dd33b bd74530 4e064ff fee32de 4e064ff fee32de 283b861 46dd33b 283b861 bd74530 d4e43d6 46dd33b 74b2bf0 98d4b40 6631a55 98d4b40 6631a55 98d4b40 6631a55 98d4b40 6631a55 fee32de 98d4b40 0680c21 6273bce 9d03b07 74b2bf0 d4e43d6 283b861 46dd33b 9f8916a fee32de 74b2bf0 46dd33b 0680c21 d4e43d6 98d4b40 d4e43d6 98d4b40 9f8916a 980b6a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import datasets
import asyncio
import numpy as np
import torch
from threading import Thread
def make_script(shader_code):
# code copied and fixed(escaping single quotes to double quotes!!!) from https://webglfundamentals.org/webgl/webgl-shadertoy.html
script = ("""
<!-- Licensed under a BSD license. See license.html for license -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>WebGL - Shadertoy</title>
<link type="text/css" href="https://webglfundamentals.org/webgl/resources/webgl-tutorials.css" rel="stylesheet" />
<style>
.divcanvas {
position: relative;
display: inline-block;
}
canvas {
display: block;
}
.playpause {
position: absolute;
left: 10px;
top: 10px;
width: 100%;
height: 100%;
font-size: 60px;
justify-content: center;
align-items: center;
color: rgba(255, 255, 255, 0.3);
transition: opacity 0.2s ease-in-out;
}
.playpausehide,
.playpause:hover {
opacity: 0;
}
.iframe .divcanvas {
display: block;
}
</style>
</head>
<body>
<div class="divcanvas">
<canvas id="canvas"></canvas>
<div class="playpause">▶</div>
</div>
\nblank canvas here indicates that some of the shadertoy specific functions are not yet supported with this implementation (like #define I believe). you can always copy and paste the code into a shadertoy.com window to try.
</body>
<!--
for most samples webgl-utils only provides shader compiling/linking and
canvas resizing because why clutter the examples with code thats the same in every sample.
See https://webglfundamentals.org/webgl/lessons/webgl-boilerplate.html
and https://webglfundamentals.org/webgl/lessons/webgl-resizing-the-canvas.html
for webgl-utils, m3, m4, and webgl-lessons-ui.
-->
<script src="https://webglfundamentals.org/webgl/resources/webgl-utils.js"></script>
<script>
"use strict";
function main() {
// Get A WebGL context
/** @type {HTMLCanvasElement} */
const canvas = document.querySelector("#canvas");
const gl = canvas.getContext("webgl");
if (!gl) {
return;
}
const vs = `
// an attribute will receive data from a buffer
attribute vec4 a_position;
// all shaders have a main function
void main() {
// gl_Position is a special variable a vertex shader
// is responsible for setting
gl_Position = a_position;
}
`;
const fs = `
precision highp float;
uniform vec2 iResolution;
uniform vec2 iMouse;
uniform float iTime;
""" + shader_code + """
void main() {
mainImage(gl_FragColor, gl_FragCoord.xy);
}
`;
// setup GLSL program
const program = webglUtils.createProgramFromSources(gl, [vs, fs]);
// look up where the vertex data needs to go.
const positionAttributeLocation = gl.getAttribLocation(program, "a_position");
// look up uniform locations
const resolutionLocation = gl.getUniformLocation(program, "iResolution");
const mouseLocation = gl.getUniformLocation(program, "iMouse");
const timeLocation = gl.getUniformLocation(program, "iTime");
// Create a buffer to put three 2d clip space points in
const positionBuffer = gl.createBuffer();
// Bind it to ARRAY_BUFFER (think of it as ARRAY_BUFFER = positionBuffer)
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// fill it with a 2 triangles that cover clipspace
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
-1, -1, // first triangle
1, -1,
-1, 1,
-1, 1, // second triangle
1, -1,
1, 1,
]), gl.STATIC_DRAW);
const playpauseElem = document.querySelector(".playpause");
const inputElem = document.querySelector(".divcanvas");
inputElem.addEventListener("mouseover", requestFrame);
inputElem.addEventListener("mouseout", cancelFrame);
let mouseX = 0;
let mouseY = 0;
function setMousePosition(e) {
const rect = inputElem.getBoundingClientRect();
mouseX = e.clientX - rect.left;
mouseY = rect.height - (e.clientY - rect.top) - 1; // bottom is 0 in WebGL
}
inputElem.addEventListener("mousemove", setMousePosition);
inputElem.addEventListener("touchstart", (e) => {
e.preventDefault();
playpauseElem.classList.add("playpausehide");
requestFrame();
}, {passive: false});
inputElem.addEventListener("touchmove", (e) => {
e.preventDefault();
setMousePosition(e.touches[0]);
}, {passive: false});
inputElem.addEventListener("touchend", (e) => {
e.preventDefault();
playpauseElem.classList.remove("playpausehide");
cancelFrame();
}, {passive: false});
let requestId;
function requestFrame() {
if (!requestId) {
requestId = requestAnimationFrame(render);
}
}
function cancelFrame() {
if (requestId) {
cancelAnimationFrame(requestId);
requestId = undefined;
}
}
let then = 0;
let time = 0;
function render(now) {
requestId = undefined;
now *= 0.001; // convert to seconds
const elapsedTime = Math.min(now - then, 0.1);
time += elapsedTime;
then = now;
webglUtils.resizeCanvasToDisplaySize(gl.canvas);
// Tell WebGL how to convert from clip space to pixels
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
// Tell it to use our program (pair of shaders)
gl.useProgram(program);
// Turn on the attribute
gl.enableVertexAttribArray(positionAttributeLocation);
// Bind the position buffer.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Tell the attribute how to get data out of positionBuffer (ARRAY_BUFFER)
gl.vertexAttribPointer(
positionAttributeLocation,
2, // 2 components per iteration
gl.FLOAT, // the data is 32bit floats
false, // dont normalize the data
0, // 0 = move forward size * sizeof(type) each iteration to get the next position
0, // start at the beginning of the buffer
);
gl.uniform2f(resolutionLocation, gl.canvas.width, gl.canvas.height);
gl.uniform2f(mouseLocation, mouseX, mouseY);
gl.uniform1f(timeLocation, time);
gl.drawArrays(
gl.TRIANGLES,
0, // offset
6, // num vertices to process
);
requestFrame();
}
requestFrame();
requestAnimationFrame(cancelFrame);
}
main();
</script>
</html>
""")
return script
def make_iframe(shader_code): #keep a single function?
script = make_script(shader_code)
return f"""<iframe width="640" height="420" srcdoc=\'{script}\' allowfullscreen></iframe>"""
intro_text = """
# Welcome to the interactive shadercoding demo.
This gives you access to a filtered version of the [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) dataset, only shaders that consist of a single pass are available.
And then lets you use code generation models to make alterations to part of the shadercode.
## How To Use:
1. Load any Model for [`text-generation`](https://huggingface.co/models?pipeline_tag=text-generation) and hit ENTER.
2. Use the slider to sample a shader from the dataset.
- The original shader will be embedding on the left, click on title to get to the source.
- The shadercode will be displayed on the right, this is interactive.
- A preview of the currently displayed shadercode will be displayed on the lower left. (hover to advance time)
3. use the dropdown to select a function to modify.
4. press either button to make modifications to that function
5. you can also edit the code manually.
"""
outro_text ="""
## Models to try (look at [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval) for an indication of how helpful they will be):
- [gpt2](https://huggingface.co/gpt2) baseline for language models, really struggles with shadercode.
- [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) a newer and larger freely available model. Does understand a big of code.
- [codeparrot/codeparrot-small](https://huggingface.co/codeparrot/codeparrot-small) a model trained on code, but not on shadercode. Manages to graps the patterns.
- [salesforce/codegen-2B-multi](https://huggingface.co/salesforce/codegen-2B-multi) a larger model that indicates some potential.
- [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) a model trained on subset of [TheStack](https://huggingface.co/datasets/bigcode/the-stack), struggles with shadercode.
- [Vipitis/santacoder-finetuned-the-stack-glsl](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl) fine-tuned by me on the glsl subset of [TheStack](https://huggingface.co/datasets/bigcode/the-stack), is an improvement.
- [Vipitis/santacoder-finetuned-Shadertoys](https://huggingface.co/Vipitis/santacoder-finetuned-Shadertoys) fine-tuned by me on whole shaders from [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys). Does overfit quite a bit with greedy decoding.
- [Vipitis/santacoder-finetuned-Shadertoys-fine](https://huggingface.co/Vipitis/santacoder-finetuned-Shadertoys-fine) fine-tuned by me just functions from [Shadertoys-fine](https://huggingface.co/datasets/Vipitis/Shadertoys-fine). Memorizes the exact function about half the time.
- [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) a very large model which I haven't tried yet.
- **any other model you want to**
## TODO (feel free to contribute with a [Pull-Request](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl/discussions?status=open&type=pull_request)):
- [x] use embedded Shadertoy for reference/attribution (done, but some errors)
- [~] working render implementation on CPU only space (as webgl via webglfundamentals, ccs needs fixing for iframe (or hijack Shadertoy iframe))
- [~] generate variations of return statements [ShaderEval task1](https://huggingface.co/spaces/Vipitis/ShaderEval) (needs to be reworked using the other parts)
- [x] generate whole functions (seems to work quite well)
- [] dropdown for model selection (from curated list or all supported models?)
- [] generation history stating which function and orig/generated returns. (use State ??). do it as comments in the code?
- [~] display errros/issues to the user (raise gr.Error could be one idea, but highlighting in the code would be awesome) currently adds a comment to the code.
- [~] generate whole shaders (via prompts guidance, recursive from errors) - prompt context is in progress.
- [x] accordion with generation parameters (as pipeline_kwargs?) look up starcoder playround and take "inspiration" from there (implemented for both buttons, untested)
- [] support FIM task for better model context
- [x] include some context for prompt (title, comments before a functions) - now takes all comments directly before a function as well as all comments at the beginning inside a function. (misses comments between argument list and body)
- [] gradio examples
- [] use GPU if available, respect memory restrictions.
- [x] stream model generation (maybe in a new window?) - janky solution and only sometimes hangs up
- [] 2nd iFrame needs a lot of fixing (I am not a web developer, need help) BUG:background is white, so colors are wrong. Shadertoy uses black background (or we ignore alpha).
- [] (optional) filtering the dataset by license?
### Notes:
- this is meant as a resource to show code generation for a "creative" task.
- the goal is not to not replace shader artists, but aims to be an assistant instead.
- the space still lacks quite a lot of features, but will continue to evolve.
- this demo can be useful to sannity check evaluation results, where the academic numbers are made.
- If you create a remix with these tools, please attribute the original creator of your starting point when sharing the results. (And perhaps share in the [discussion tab](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl/discussions?status=open&type=discussion) too)
"""
new_shadertoy_code = """void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
// touch the slider to load a shader from the dataset or start coding from here.
vec2 uv = fragCoord/iResolution.xy;
vec3 col = 0.5 + 0.5*cos(iTime+uv.xyx+vec3(0,2,4));
fragColor = vec4(col,1.0);
}"""
passes_dataset = datasets.load_dataset("Vipitis/Shadertoys")
single_passes = passes_dataset.filter(lambda x: not x["has_inputs"] and x["num_passes"] == 1) #could also include shaders with no extra functions.
# single_passes = single_passes.filter(lambda x: x["license"] not in "copyright") #to avoid any "do not display this" license?
all_single_passes = datasets.concatenate_datasets([single_passes["train"], single_passes["test"]])
num_samples = len(all_single_passes)
import tree_sitter
from tree_sitter import Language, Parser
Language.build_library("./build/my-languages.so", ['tree-sitter-glsl'])
GLSL_LANGUAGE = Language('./build/my-languages.so', 'glsl')
parser = Parser()
parser.set_language(GLSL_LANGUAGE)
def grab_sample(sample_idx):
sample_pass = all_single_passes[sample_idx]
sample_code = sample_pass["code"]
sample_source = sample_pass["source"]
sample_title = sample_pass["title"]
sample_auhtor = sample_pass["author"]
source_iframe = construct_embed(sample_source)
print(f"{source_iframe=}")
# sample_funcs = _parse_functions(sample_code)
# funcs = _parse_functions(sample_code)
# func_identifiers = [f"{idx:2d}: {n.child_by_field_name('declarator').text.decode()}" for idx, n in enumerate(funcs)]
# print(f"updating drop down to:{func_identifiers}")
return sample_pass, sample_code, sample_title, source_iframe, funcs#, gr.Dropdown.update(choices=func_identifiers) #, sample_title, sample_auhtor
def _parse_functions(in_code):
"""
returns all functions in the code as their actual nodes.
includes any comment made directly after the function definition or diretly after #copilot trigger
"""
tree = parser.parse(bytes(in_code, "utf8"))
funcs = [n for n in tree.root_node.children if n.type == "function_definition"]
return funcs
PIPE = None
def _make_pipeline(model_cp = "Vipitis/santacoder-finetuned-Shadertoys-fine"): #bad default model for testing
# if torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_cp, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_cp, trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True) #, device=device)
PIPE = pipe # set the global?
print(f"loaded model {model_cp} as a pipline")
return pipe
def _run_generation(model_ctx:str, pipe, gen_kwargs:dict):
"""
Text generation function
Args:
model_ctx (str): The context to start generation from.
pipe (Pipeline): The pipeline to use for generation.
gen_kwargs (dict): The generation kwargs.
Returns:
str: The generated text. (it iterates over time)
"""
# Tokenize the model_context
model_inputs = pipe.tokenizer(model_ctx, return_tensors="pt")
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15.0)
generate_kwargs = dict(model_inputs, streamer=streamer, **gen_kwargs)
t = Thread(target=pipe.model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
# print("step", end="")
model_output += new_text
yield model_output
streamer.on_finalized_text("stream reached the end.")
return model_output #is this ever reached?
def process_retn(retn):
return retn.split(";")[0].strip()
def get_full_replacement(orig_code, retn_start_idx, retn_end_idx, prediction) -> str:
"""
Batches the generated return statement into the code and returns the full altered code.
"""
print(f"{orig_code[retn_start_idx:retn_end_idx]=}")
generated = process_retn(prediction)
print(f"{generated=}")
variation = orig_code[:retn_start_idx] + generated + orig_code[retn_end_idx:]
return variation
def alter_return(orig_code, func_idx, temperature, max_new_tokens, top_p, repetition_penalty, pipeline=PIPE): #default pipeline can't be passed as gloabl?
"""
Replaces the return statement of a function with a generated one.
Args:
orig_code (str): The original code.
func_idx (int): The index of the function to replace the return statement of.
temperature (float): The temperature to use for generation.
max_new_tokens (int): The maximum number of tokens to generate.
top_p (float): The top_p to use for generation.
repetition_penalty (float): The repetition_penalty to use for generation.
pipeline (Pipeline): The pipeline to use for generation.
Returns:
str: The altered code.
"""
if pipeline is None:
print("no pipeline found, loading default one")
pipeline = _make_pipeline()
if isinstance(func_idx, str):
print(f"{func_idx=}")
func_idx = int(func_idx.split(":")[0].strip())
elif isinstance(func_idx, int):
pass
else:
raise gr.Error(f"func_idx must be int or str, not {type(func_idx)}")
generation_kwargs = _combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty)
retrns = []
retrn_start_idx = orig_code.find("return")
while retrn_start_idx != -1:
retrn_end_idx = orig_code.find(";", retrn_start_idx)
retrns.append((retrn_start_idx, retrn_end_idx))
retrn_start_idx = orig_code.find("return", retrn_end_idx)
num_returns = len(retrns)
if num_returns == 0:
print("no return statement found, returning original code")
return orig_code
func_idx = int(max(0, min(func_idx, num_returns - 1))) #clamp to valid range, cast to int as a bodge.
retrn_start_idx, retrn_end_idx = retrns[func_idx]
model_context = orig_code[:retrn_start_idx] #TODO: maximal context?
model_inp = model_context + "return"
pipe_generation = pipeline(model_inp, return_full_text=False, **generation_kwargs)[0]["generated_text"] #pipeline kwargs are missing?!
altered_code = get_full_replacement(orig_code, retrn_start_idx+7, retrn_end_idx, pipe_generation)
return altered_code
def _line_chr2char(text, line_idx, chr_idx):
"""
returns the character index at the given line and character index.
"""
lines = text.split("\n")
char_idx = 0
for i in range(line_idx):
char_idx += len(lines[i]) + 1
char_idx += chr_idx
return char_idx
def _combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty):
gen_kwargs = {}
gen_kwargs["temperature"] = temperature
gen_kwargs["max_new_tokens"] = max_new_tokens
gen_kwargs["top_p"] = top_p
gen_kwargs["repetition_penalty"] = repetition_penalty
return gen_kwargs
def _grab_before_comments(func_node):
"""
returns the comments that happen just before a function node
"""
precomment = ""
last_comment_line = 0
for node in func_node.parent.children: #could you optimize where to iterated from? directon?
if node.start_point[0] != last_comment_line + 1:
precomment = ""
if node.type == "comment":
precomment += node.text.decode() + "\n"
last_comment_line = node.start_point[0]
elif node == func_node:
return precomment
return precomment
def _get_docstrings(func_node):
"""
returns the docstring of a function node
"""
docstring = ""
for node in func_node.child_by_field_name("body").children:
if node.type == "comment" or node.type == "{":
docstring += node.text.decode() + "\n"
else:
return docstring
return docstring
def alter_body(old_code, func_id, funcs_list: list, prompt, temperature, max_new_tokens, top_p, repetition_penalty, pipeline=PIPE):
"""
Replaces the body of a function with a generated one.
Args:
old_code (str): The original code.
func_node (Node): The node of the function to replace the body of.
funcs_list (list): The list of all functions in the code.
prompt (str): The prompt(title) to use for generation.
temperature (float): The temperature to use for generation.
max_new_tokens (int): The maximum number of tokens to generate.
top_p (float): The top_p to use for generation.
repetition_penalty (float): The repetition_penalty to use for generation.
pipeline (Pipeline): The pipeline to use for generation.
Returns:
str: The altered code.
pipeline (Pipeline): The pipeline to update the state
"""
if isinstance(func_id, str):
print(f"{func_id=}")
func_id = int(func_id.split(":")[0].strip()) #undo their string casting?
elif isinstance(func_id, int):
pass
else:
raise gr.Error(f"func_id must be int or str, not {type(func_id)}")
func_node = funcs_list[func_id]
print(f"using for generation: {func_node=}")
generation_kwargs = _combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty)
print(f"{pipeline=}") # check if default even loaded
if pipeline is None:
print("no pipeline found, loading default one")
pipeline = _make_pipeline("Vipitis/santacoder-finetuned-Shadertoys-fine")
func_start_idx = _line_chr2char(old_code, func_node.start_point[0], func_node.start_point[1])
identifier_str = func_node.child_by_field_name("type").text.decode() + " " + func_node.child_by_field_name("declarator").text.decode() #func_start_idx:body_start_idx?
body_node = func_node.child_by_field_name("body")
body_start_idx = _line_chr2char(old_code, body_node.start_point[0], body_node.start_point[1])
body_end_idx = _line_chr2char(old_code, body_node.end_point[0], body_node.end_point[1])
print(f"{old_code[body_start_idx:body_end_idx]=}")
model_context = identifier_str # base case
# add any comments at the beginning of the function to the model_context
# second_child = func_node.child_by_field_name("body").children[1] #might error out?
docstring = _get_docstrings(func_node) #might be empty?
if docstring:
model_context = model_context + "\n" + docstring
model_context = _grab_before_comments(func_node) + model_context #prepend comments
if prompt != "":
model_context = f"//avialable functions: {','.join([n.child_by_field_name('declarator').text.decode() for n in funcs_list])}\n" + model_context #prepend available functions
model_context = "//Title: " + prompt + "\n" + model_context #prepend user prompt/title
model_context = "//Language: Shadertoy GLSL fragment shader\n" + model_context #prepend system prompt, language hint
print(f"{model_context=}")
# generation = pipeline(model_context, return_full_text=False, **generation_kwargs)[0]["generated_text"]
generation = _run_generation(model_context, pipeline, generation_kwargs)
for i in generation:
print(f"{i=}")
yield model_context + i, pipeline #fix in between, do all the stuff in the end?
generation = i[:] #seems to work
print(f"{generation=}")
ctx_with_generation = model_context + generation
print(f"{ctx_with_generation=}")
try:
#strip the body
first_gened_func = _parse_functions(ctx_with_generation)[0] # truncate generation to a single function?
except IndexError:
print("generation wasn't a full function.")
altered_code = old_code[:func_start_idx] + model_context + generation + "//the generation didn't complete the function!\n" + old_code[body_end_idx:] #needs a newline to break out of the comment.
return altered_code, pipeline
# raise gr.Error(f"didn't generate a full function: {generation!r}]")
print(f"{first_gened_func=}")
generated_body = first_gened_func.child_by_field_name("body").text.decode()
print(f"{generated_body=}")
altered_code = old_code[:func_start_idx] + identifier_str + generated_body + old_code[body_end_idx:]
print(f"{altered_code=}") #we get here successfully
yield altered_code, pipeline #yield once so it updates? -> works... gg but doesn't seem to do it for the dropdown
return altered_code, pipeline #never gets used by the code block? maybe I need to yield it first? but works in the ov_notebook
def add_history(func_id, orig_rtn, gened_rtn, history):
# is this a list? or a JSON dict?
history[func_id] = (orig_rtn, gened_rtn)
return history, history
def list_dropdown(in_code): #only used for auto update, not on sample pick?
funcs = _parse_functions(in_code)
# print(f"updating drop down to:{func_identifiers=}")
func_identifiers = [f"{idx:2d}: {n.child_by_field_name('declarator').text.decode()}" for idx, n in enumerate(funcs)]
# funcs = [n for n in funcs] #wrapped as set to avoid json issues?
print(f"updating drop down to:{func_identifiers}")
return funcs, gr.Dropdown.update(choices=func_identifiers)
def construct_embed(source_url):
shader_id = source_url.split("/")[-1]
return f'<iframe width="640" height="360" frameborder="0" src="https://www.shadertoy.com/embed/{shader_id}?gui=true&t=0&paused=true&muted=true" allowfullscreen></iframe>'
with gr.Blocks() as site:
top_md = gr.Markdown(intro_text)
model_cp = gr.Textbox(value="Vipitis/santacoder-finetuned-Shadertoys-fine", label="Model Checkpoint (Enter to load!)", interactive=True)
sample_idx = gr.Slider(minimum=0, maximum=num_samples, value=3211, label="pick sample from dataset", step=1.0)
func_dropdown = gr.Dropdown(value=["0: edit the Code (or load a shader) to update this dropdown"], label="chose a function to modify") #breaks if I add a string in before that? #TODO: use type="index" to get int - always gives None?
prompt_text = gr.Textbox(value="the title used by the model has generation hint", label="prompt text", info="leave blank to skip", interactive=True)
with gr.Accordion("Advanced settings", open=False): # from: https://huggingface.co/spaces/bigcode/bigcode-playground/blob/main/app.py
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2, #start out at 0 to do greedy? or will there be an error?
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=265,
minimum=0,
maximum=2048, #this could be inferred from the model?
step=32,
interactive=True,
info="The maximum numbers of new tokens",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Row():
gen_return_button = gr.Button("generate a alternate return statement", label="generate return", scale=0)
gen_func_button = gr.Button("generate an alternate function body", label="generate function", scale=1)
with gr.Row():
with gr.Column():
source_embed = gr.HTML('<iframe width="640" height="360" frameborder="0" src="" allowfullscreen></iframe>', label="How this shader originally renders")
our_embed = gr.HTML(label="glsl render of the current code")
sample_code = gr.Code(new_shadertoy_code, label="Current Code (will update changes you generate)", language=None)
bot_md = gr.Markdown(outro_text)
sample_pass = gr.State(value={})
pipe = gr.State(value=PIPE)
pipe.value=_make_pipeline("Vipitis/santacoder-finetuned-Shadertoys-fine") # set a default like this?
funcs = gr.State(value=[])
# funcs.value.append(list_dropdown(sample_code.value)[0]) #to circumvent the json issue?
# hist_state = gr.State(Value={})
# history_table = gr.JSON()
model_cp.submit(fn=_make_pipeline, inputs=[model_cp], outputs=[pipe]) # how can we trigger this on load?
sample_idx.release(fn=grab_sample, inputs=[sample_idx], outputs=[sample_pass, sample_code, prompt_text, source_embed]) #funcs here?
gen_return_button.click(fn=alter_return, inputs=[sample_code, func_dropdown, pipe], outputs=[sample_code])
gen_func_button.click(fn=alter_body, inputs=[sample_code, func_dropdown, funcs, prompt_text, temperature, max_new_tokens, top_p, repetition_penalty, pipe], outputs=[sample_code, pipe]).then(
fn=list_dropdown, inputs=[sample_code], outputs=[funcs, func_dropdown]
)
sample_code.change(fn=list_dropdown, inputs=[sample_code], outputs=[funcs, func_dropdown]).then(
fn=make_iframe, inputs=[sample_code], outputs=[our_embed])
if __name__ == "__main__": #works on huggingface?
site.queue()
site.launch() |