Spaces:
Runtime error
Runtime error
File size: 12,455 Bytes
bd74530 283b861 46dd33b 283b861 46dd33b 0680c21 283b861 bd74530 283b861 46dd33b 283b861 bd74530 46dd33b bd74530 46dd33b bd74530 283b861 46dd33b 283b861 bd74530 46dd33b 0680c21 283b861 46dd33b 0680c21 46dd33b 283b861 46dd33b 283b861 bd74530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from wgpu.utils.shadertoy import *
from wgpu.gui.offscreen import WgpuCanvas as OffscreenCanvas, run as run_offscreen
import wgpu
import time
import ctypes
import datasets
from PIL import Image
import asyncio
import numpy as np
# reimplement the Shadertoy class with offscreen canvas!
class ShadertoyCustom(Shadertoy):
def __init__(self, shader_code, resolution=(800, 450), canvas_class=WgpuCanvas, run_fn=run):
self._canvas_class = canvas_class
self._fun_fn = run_fn
super().__init__(shader_code, resolution)
self._uniform_data = UniformArray(
("mouse", "f", 4),
("resolution", "f", 3),
("time", "f", 1),
("time_delta", "f", 1),
("frame", "I", 1),
)
self._shader_code = shader_code
self._uniform_data["resolution"] = resolution + (1,)
self._prepare_render()
self._bind_events()
def _prepare_render(self):
import wgpu.backends.rs # noqa
self._canvas = self._canvas_class(title="Shadertoy", size=self.resolution, max_fps=60)
adapter = wgpu.request_adapter(
canvas=self._canvas, power_preference="high-performance"
)
self._device = adapter.request_device()
self._present_context = self._canvas.get_context()
# We use "bgra8unorm" not "bgra8unorm-srgb" here because we want to let the shader fully control the color-space.
self._present_context.configure(
device=self._device, format=wgpu.TextureFormat.bgra8unorm
)
shader_type = self.shader_type
if shader_type == "glsl":
vertex_shader_code = vertex_code_glsl
frag_shader_code = (
builtin_variables_glsl + self.shader_code + fragment_code_glsl
)
elif shader_type == "wgsl":
vertex_shader_code = vertex_code_wgsl
frag_shader_code = (
builtin_variables_wgsl + self.shader_code + fragment_code_wgsl
)
vertex_shader_program = self._device.create_shader_module(
label="triangle_vert", code=vertex_shader_code
)
frag_shader_program = self._device.create_shader_module(
label="triangle_frag", code=frag_shader_code
)
self._uniform_buffer = self._device.create_buffer(
size=self._uniform_data.nbytes,
usage=wgpu.BufferUsage.UNIFORM | wgpu.BufferUsage.COPY_DST,
)
bind_group_layout = self._device.create_bind_group_layout(
entries=binding_layout
)
self._bind_group = self._device.create_bind_group(
layout=bind_group_layout,
entries=[
{
"binding": 0,
"resource": {
"buffer": self._uniform_buffer,
"offset": 0,
"size": self._uniform_data.nbytes,
},
},
],
)
self._render_pipeline = self._device.create_render_pipeline(
layout=self._device.create_pipeline_layout(
bind_group_layouts=[bind_group_layout]
),
vertex={
"module": vertex_shader_program,
"entry_point": "main",
"buffers": [],
},
primitive={
"topology": wgpu.PrimitiveTopology.triangle_list,
"front_face": wgpu.FrontFace.ccw,
"cull_mode": wgpu.CullMode.none,
},
depth_stencil=None,
multisample=None,
fragment={
"module": frag_shader_program,
"entry_point": "main",
"targets": [
{
"format": wgpu.TextureFormat.bgra8unorm,
"blend": {
"color": (
wgpu.BlendFactor.one,
wgpu.BlendFactor.zero,
wgpu.BlendOperation.add,
),
"alpha": (
wgpu.BlendFactor.one,
wgpu.BlendFactor.zero,
wgpu.BlendOperation.add,
),
},
},
],
},
)
def show(self, time: float = 0.0):
self._canvas.request_draw(self._draw_frame)
self._fun_fn()
text = """
# Welcome to the interactive shadercoding demo.
## (WIP), you can try and explore the dataset a bit right now. (frames are rendered on the fly, not part of the dataset(yet))
This gives you access to a filtered version of the [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) dataset, only shaders that const of a single pass (and have at least one fuction with a return statement) are available.
In the near future there will be some buttons and sliders to generate variations of the shadercode itself, and hence get some different images.
If I find an efficient way, the shaders might run in real time and be interactive.
## TODO:
- [x] use embedded Shadertoy for reference/attribution (done, but some errors)
- [] working render implementation on CPU only space (use the browser for WebGPU?)
- [~] generate variations of return statements [ShaderEval task1](https://huggingface.co/spaces/Vipitis/ShaderEval) (missing all of the generation parameters)
- [] generation history stating which function and orig/generated returns. (use State ??). do it as comments in the code?
- [] generate whole functions
- [] generate whole shaders (via prompts?)
"""
passes_dataset = datasets.load_dataset("Vipitis/Shadertoys")
single_passes = passes_dataset.filter(lambda x: not x["has_inputs"] and x["num_passes"] == 1 and x["code"].count("return") >= 1) #filter easier than having a custom loader script?
all_single_passes = datasets.concatenate_datasets([single_passes["train"], single_passes["test"]])
num_samples = len(all_single_passes)
async def get_image(code, time= 0.0, resolution=(512, 420)):
shader = ShadertoyCustom(code, resolution, OffscreenCanvas, run_offscreen) #pass offscreen canvas here.
shader._uniform_data["time"] = time #set any time you want
shader._canvas.request_draw(shader._draw_frame)
# frame = shader._canvas.snapshot().data
frame = np.asarray(shader._canvas.draw())
img = Image.fromarray(frame)
# remove transparent pixels
img = img.convert('RGB')
return img
def grab_sample(sample_idx):
sample_pass = all_single_passes[sample_idx]
sample_code = sample_pass["code"]
sample_source = sample_pass["source"]
sample_title = sample_pass["title"]
sample_auhtor = sample_pass["author"]
source_iframe = construct_embed(sample_source)
print(f"{source_iframe=}")
return sample_pass, sample_code, source_iframe #, sample_title, sample_auhtor
PIPE = None #gloabl var in CAPS indicates constant? so why are we changing it?
def _make_pipeline(model_cp = "gpt2"): #bad default model for testing
tokenizer = AutoTokenizer.from_pretrained(model_cp, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_cp, trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True)
PIPE = pipe # set the global?
print(f"loaded model {model_cp} as a pipline")
return pipe
def process_retn(retn):
return retn.split(";")[0].strip()
def get_full_replacement(orig_code, retn_start_idx, retn_end_idx, prediction) -> str:
"""
Batches the generated return statement into the code and returns the full altered code.
"""
print(f"{orig_code[retn_start_idx:retn_end_idx]=}")
generated = process_retn(prediction)
print(f"{generated=}")
variation = orig_code[:retn_start_idx] + generated + orig_code[retn_end_idx:]
return variation
def alter_return(orig_code, func_idx=0, pipeline=PIPE): #default pipeline can't be passed as gloabl?
"""
Replaces the return statement of a function with a generated one.
Args:
orig_code (str): The original code.
func_idx (int): The index of the function to replace the return statement of.
pipeline (Pipeline): The pipeline to use for generation.
Returns:
str: The altered code.
"""
if pipeline is None:
print("no pipeline found, loading default one")
pipeline = _make_pipeline()
retrns = []
retrn_start_idx = orig_code.find("return")
while retrn_start_idx != -1:
retrn_end_idx = orig_code.find(";", retrn_start_idx)
retrns.append((retrn_start_idx, retrn_end_idx))
retrn_start_idx = orig_code.find("return", retrn_end_idx)
num_returns = len(retrns)
if num_returns == 0:
print("no return statement found, returning original code")
return orig_code
func_idx = int(max(0, min(func_idx, num_returns - 1))) #clamp to valid range, cast to int as a bodge.
retrn_start_idx, retrn_end_idx = retrns[func_idx]
model_context = orig_code[:retrn_start_idx] #TODO: maximal context?
model_inp = model_context + "return"
new_toks = (retrn_end_idx - retrn_start_idx) * 2 #TODO: approximation, we do have early stopping? maybe also use a number instead?
pipe_generation = pipeline(model_inp, max_new_tokens=new_toks, return_full_text=False)[0]["generated_text"] #pipeline kwargs are missing?!
altered_code = get_full_replacement(orig_code, retrn_start_idx+7, retrn_end_idx, pipe_generation)
return altered_code
def add_history(func_id, orig_rtn, gened_rtn, history):
# is this a list? or a JSON dict?
history[func_id] = (orig_rtn, gened_rtn)
return history, history
def construct_embed(source_url):
shader_id = source_url.split("/")[-1]
return f'<iframe width="640" height="360" frameborder="0" src="https://www.shadertoy.com/embed/{shader_id}?gui=true&t=0&paused=true&muted=true" allowfullscreen></iframe>'
with gr.Blocks() as site:
text_md = gr.Markdown(text)
model_cp = gr.Textbox(value="Vipitis/santacoder-finetuned-Shadertoys-fine", label="Model Checkpoint (Enter to load!)", interactive=True)
sample_idx = gr.Slider(minimum=0, maximum=num_samples, value=3211, label="pick sample from dataset", step=1.0)
run_button = gr.Button("generate a alternate return statement for one function", label="generate code")
render_button = gr.Button("render frame0 (can carsh the sapce on invalid shadercode)",label="render frame")
time_slider = gr.Slider(minimum=0, maximum=10, value=0, label="time (update on release, also used to pick other functions as a bodge)", step=0.02)
with gr.Row():
with gr.Column():
source_embed = gr.HTML('<iframe width="640" height="360" frameborder="0" src="https://www.shadertoy.com/embed/WsBcWV?gui=true&t=0&paused=true&muted=true" allowfullscreen></iframe>', label="How this shader originally renders")
rendered_frame = gr.Image(shape=(512, 420), label=f"rendered frame preview")
sample_code = gr.Code(label="Current Code (will update changes you generate)", language=None, readonly=True, lines=20)
sample_pass = gr.State(value={})
pipe = gr.State(value=PIPE)
# hist_state = gr.State(Value={})
# history_table = gr.JSON()
model_cp.submit(fn=_make_pipeline, inputs=[model_cp], outputs=[pipe])
sample_idx.release(fn=grab_sample, inputs=[sample_idx], outputs=[sample_pass, sample_code, source_embed])
run_button.click(fn=alter_return, inputs=[sample_code, time_slider, pipe], outputs=[sample_code])
# run_button.click(fn=add_history, inputs=[time_slider, sample_pass, sample_code, hist_state], outputs=[history_table, hist_state])
# sample_idx.release(fn=construct_embed, inputs=[sample_idx], outputs=[source_embed]) #twice to make have different outputs?
time_slider.release(fn=lambda code, time: asyncio.run(get_image(code, time)), inputs=[sample_code, time_slider], outputs=rendered_frame)
render_button.click(fn=lambda code: asyncio.run(get_image(code)), inputs=[sample_code], outputs=rendered_frame)
# run_button.click(fn=print, inputs=[model_cp, sample_idx], outputs=output)
site.launch()
|