from configs.sldd_training_params import OptimizationScheduler class QSENNScheduler(OptimizationScheduler): def get_params(self): params = super().get_params() if self.n_calls >= 2: params[0] = params[0] * 0.9**(self.n_calls-2) if 2 <= self.n_calls <= 4: params[-2] = 10# Change num epochs to 10 for iterative finetuning return params