Haaribo's picture
Add application file
8d4ee22
import math
import os
import sys
import torch.cuda
import sparsification.utils
sys.path.append('')
import numpy as np
import torch as ch
from torch.utils.data import Subset
from tqdm import tqdm
# From glm_saga
def get_features_batch(batch, model, device='cuda'):
if not torch.cuda.is_available():
device = "cpu"
ims, targets = batch
output, latents = model(ims.to(device), with_final_features=True )
return latents, targets
def compute_features(loader, model, dataset_type, pooled_output,
batch_size, num_workers,
shuffle=False, device='cpu', n_epoch=1,
filename=None, chunk_threshold=20000, balance=False):
"""Compute deep features for a given dataset using a modeln and returnss
them as a pytorch dataset and loader.
Args:
loader : Torch data loader
model: Torch model
dataset_type (str): One of vision or language
pooled_output (bool): Whether or not to pool outputs
(only relevant for some language models)
batch_size (int): Batch size for output loader
num_workers (int): Number of workers to use for output loader
shuffle (bool): Whether or not to shuffle output data loaoder
device (str): Device on which to keep the model
filename (str):Optional file to cache computed feature. Recommended
for large dataset_classes like ImageNet.
chunk_threshold (int): Size of shard while caching
balance (bool): Whether or not to balance output data loader
(only relevant for some language models)
Returns:
feature_dataset: Torch dataset with deep features
feature_loader: Torch data loader with deep features
"""
if torch.cuda.is_available():
device = "cuda"
print("mem_get_info before", torch.cuda.mem_get_info())
torch.cuda.empty_cache()
print("mem_get_info after", torch.cuda.mem_get_info())
model = model.to(device)
if filename is None or not os.path.exists(os.path.join(filename, f'0_features.npy')):
model.eval()
all_latents, all_targets, all_images = [], [], []
Nsamples, chunk_id = 0, 0
for idx_epoch in range(n_epoch):
for batch_idx, batch in tqdm(enumerate(loader), total=len(loader)):
with ch.no_grad():
latents, targets = get_features_batch(batch, model,
device=device)
if batch_idx == 0:
print("Latents shape", latents.shape)
Nsamples += latents.size(0)
all_latents.append(latents.cpu())
if len(targets.shape) > 1:
targets = targets[:, 0]
all_targets.append(targets.cpu())
# all_images.append(batch[0])
if filename is not None and Nsamples > chunk_threshold:
if not os.path.exists(filename): os.makedirs(filename)
np.save(os.path.join(filename, f'{chunk_id}_features.npy'), ch.cat(all_latents).numpy())
np.save(os.path.join(filename, f'{chunk_id}_labels.npy'), ch.cat(all_targets).numpy())
all_latents, all_targets, Nsamples = [], [], 0
chunk_id += 1
if filename is not None and Nsamples > 0:
if not os.path.exists(filename): os.makedirs(filename)
np.save(os.path.join(filename, f'{chunk_id}_features.npy'), ch.cat(all_latents).numpy())
np.save(os.path.join(filename, f'{chunk_id}_labels.npy'), ch.cat(all_targets).numpy())
# np.save(os.path.join(filename, f'{chunk_id}_images.npy'), ch.cat(all_images).numpy())
feature_dataset = load_features(filename) if filename is not None else \
ch.utils.data.TensorDataset(ch.cat(all_latents), ch.cat(all_targets))
if balance:
feature_dataset = balance_dataset(feature_dataset)
feature_loader = ch.utils.data.DataLoader(feature_dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle)
return feature_dataset, feature_loader
def load_feature_loader(out_dir_feats, val_frac, batch_size, num_workers, random_seed):
feature_loaders = {}
for mode in ['train', 'test']:
print(f"For {mode} set...")
sink_path = f"{out_dir_feats}/features_{mode}"
metadata_path = f"{out_dir_feats}/metadata_{mode}.pth"
feature_ds = load_features(sink_path)
feature_loader = ch.utils.data.DataLoader(feature_ds,
num_workers=num_workers,
batch_size=batch_size)
if mode == 'train':
metadata = calculate_metadata(feature_loader,
num_classes=2048,
filename=metadata_path)
split_datasets, split_loaders = split_dataset(feature_ds,
len(feature_ds),
val_frac=val_frac,
batch_size=batch_size,
num_workers=num_workers,
random_seed=random_seed,
shuffle=True)
feature_loaders.update({mm: sparsification.utils.add_index_to_dataloader(split_loaders[mi])
for mi, mm in enumerate(['train', 'val'])})
else:
feature_loaders[mode] = feature_loader
return feature_loaders, metadata
def balance_dataset(dataset):
"""Balances a given dataset to have the same number of samples/class.
Args:
dataset : Torch dataset
Returns:
Torch dataset with equal number of samples/class
"""
print("Balancing dataset...")
n = len(dataset)
labels = ch.Tensor([dataset[i][1] for i in range(n)]).int()
n0 = sum(labels).item()
I_pos = labels == 1
idx = ch.arange(n)
idx_pos = idx[I_pos]
ch.manual_seed(0)
I = ch.randperm(n - n0)[:n0]
idx_neg = idx[~I_pos][I]
idx_bal = ch.cat([idx_pos, idx_neg], dim=0)
return Subset(dataset, idx_bal)
def load_metadata(feature_path):
return ch.load(os.path.join(feature_path, f'metadata_train.pth'))
def get_mean_std(feature_path):
metadata = load_metadata(feature_path)
return metadata["X"]["mean"], metadata["X"]["std"]
def load_features_dataset_mode(feature_path, mode='test',
num_workers=10, batch_size=128):
"""Loads precomputed deep features corresponding to the
train/test set along with normalization statitic.
Args:
feature_path (str): Path to precomputed deep features
mode (str): One of train or tesst
num_workers (int): Number of workers to use for output loader
batch_size (int): Batch size for output loader
Returns:
features (np.array): Recovered deep features
feature_mean: Mean of deep features
feature_std: Standard deviation of deep features
"""
feature_dataset = load_features(os.path.join(feature_path, f'features_{mode}'))
feature_loader = ch.utils.data.DataLoader(feature_dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=False)
feature_metadata = ch.load(os.path.join(feature_path, f'metadata_train.pth'))
feature_mean, feature_std = feature_metadata['X']['mean'], feature_metadata['X']['std']
return feature_loader, feature_mean, feature_std
def load_joint_dataset(feature_path, mode='test',
num_workers=10, batch_size=128):
feature_dataset = load_features(os.path.join(feature_path, f'features_{mode}'))
feature_loader = ch.utils.data.DataLoader(feature_dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=False)
features = []
labels = []
for _, (feature, label) in tqdm(enumerate(feature_loader), total=len(feature_loader)):
features.append(feature)
labels.append(label)
features = np.concatenate(features)
labels = np.concatenate(labels)
dataset = ch.utils.data.TensorDataset(torch.tensor(features), torch.tensor(labels))
return dataset
def load_features_mode(feature_path, mode='test',
num_workers=10, batch_size=128):
"""Loads precomputed deep features corresponding to the
train/test set along with normalization statitic.
Args:
feature_path (str): Path to precomputed deep features
mode (str): One of train or tesst
num_workers (int): Number of workers to use for output loader
batch_size (int): Batch size for output loader
Returns:
features (np.array): Recovered deep features
feature_mean: Mean of deep features
feature_std: Standard deviation of deep features
"""
feature_dataset = load_features(os.path.join(feature_path, f'features_{mode}'))
feature_loader = ch.utils.data.DataLoader(feature_dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=False)
feature_metadata = ch.load(os.path.join(feature_path, f'metadata_train.pth'))
feature_mean, feature_std = feature_metadata['X']['mean'], feature_metadata['X']['std']
features = []
for _, (feature, _) in tqdm(enumerate(feature_loader), total=len(feature_loader)):
features.append(feature)
features = ch.cat(features).numpy()
return features, feature_mean, feature_std
def load_features(feature_path):
"""Loads precomputed deep features.
Args:
feature_path (str): Path to precomputed deep features
Returns:
Torch dataset with recovered deep features.
"""
if not os.path.exists(os.path.join(feature_path, f"0_features.npy")):
raise ValueError(f"The provided location {feature_path} does not contain any representation files")
ds_list, chunk_id = [], 0
while os.path.exists(os.path.join(feature_path, f"{chunk_id}_features.npy")):
features = ch.from_numpy(np.load(os.path.join(feature_path, f"{chunk_id}_features.npy"))).float()
labels = ch.from_numpy(np.load(os.path.join(feature_path, f"{chunk_id}_labels.npy"))).long()
ds_list.append(ch.utils.data.TensorDataset(features, labels))
chunk_id += 1
print(f"==> loaded {chunk_id} files of representations...")
return ch.utils.data.ConcatDataset(ds_list)
def calculate_metadata(loader, num_classes=None, filename=None):
"""Calculates mean and standard deviation of the deep features over
a given set of images.
Args:
loader : torch data loader
num_classes (int): Number of classes in the dataset
filename (str): Optional filepath to cache metadata. Recommended
for large dataset_classes like ImageNet.
Returns:
metadata (dict): Dictionary with desired statistics.
"""
if filename is not None and os.path.exists(filename):
print("loading Metadata from ", filename)
return ch.load(filename)
# Calculate number of classes if not given
if num_classes is None:
num_classes = 1
for batch in loader:
y = batch[1]
print(y)
num_classes = max(num_classes, y.max().item() + 1)
eye = ch.eye(num_classes)
X_bar, y_bar, y_max, n = 0, 0, 0, 0
# calculate means and maximum
print("Calculating means")
for ans in tqdm(loader, total=len(loader)):
X, y = ans[:2]
X_bar += X.sum(0)
y_bar += eye[y].sum(0)
y_max = max(y_max, y.max())
n += y.size(0)
X_bar = X_bar.float() / n
y_bar = y_bar.float() / n
# calculate std
X_std, y_std = 0, 0
print("Calculating standard deviations")
for ans in tqdm(loader, total=len(loader)):
X, y = ans[:2]
X_std += ((X - X_bar) ** 2).sum(0)
y_std += ((eye[y] - y_bar) ** 2).sum(0)
X_std = ch.sqrt(X_std.float() / n)
y_std = ch.sqrt(y_std.float() / n)
# calculate maximum regularization
inner_products = 0
print("Calculating maximum lambda")
for ans in tqdm(loader, total=len(loader)):
X, y = ans[:2]
y_map = (eye[y] - y_bar) / y_std
inner_products += X.t().mm(y_map) * y_std
inner_products_group = inner_products.norm(p=2, dim=1)
metadata = {
"X": {
"mean": X_bar,
"std": X_std,
"num_features": X.size()[1:],
"num_examples": n
},
"y": {
"mean": y_bar,
"std": y_std,
"num_classes": y_max + 1
},
"max_reg": {
"group": inner_products_group.abs().max().item() / n,
"nongrouped": inner_products.abs().max().item() / n
}
}
if filename is not None:
ch.save(metadata, filename)
return metadata
def split_dataset(dataset, Ntotal, val_frac,
batch_size, num_workers,
random_seed=0, shuffle=True, balance=False):
"""Splits a given dataset into train and validation
Args:
dataset : Torch dataset
Ntotal: Total number of dataset samples
val_frac: Fraction to reserve for validation
batch_size (int): Batch size for output loader
num_workers (int): Number of workers to use for output loader
random_seed (int): Random seed
shuffle (bool): Whether or not to shuffle output data loaoder
balance (bool): Whether or not to balance output data loader
(only relevant for some language models)
Returns:
split_datasets (list): List of dataset_classes (one each for train and val)
split_loaders (list): List of loaders (one each for train and val)
"""
Nval = math.floor(Ntotal * val_frac)
train_ds, val_ds = ch.utils.data.random_split(dataset,
[Ntotal - Nval, Nval],
generator=ch.Generator().manual_seed(random_seed))
if balance:
val_ds = balance_dataset(val_ds)
split_datasets = [train_ds, val_ds]
split_loaders = []
for ds in split_datasets:
split_loaders.append(ch.utils.data.DataLoader(ds,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle))
return split_datasets, split_loaders