Spaces:
Sleeping
Sleeping
import torch | |
from configs.optim_params import EvaluatedDict | |
dataset_constants = {"CUB2011":{"num_classes":200}, | |
"TravelingBirds":{"num_classes":200}, | |
"ImageNet":{"num_classes":1000}, | |
"StanfordCars":{"num_classes":196}, | |
"FGVCAircraft": {"num_classes":100}} | |
normalize_params = {"CUB2011":{"mean": torch.tensor([0.4853, 0.4964, 0.4295]),"std":torch.tensor([0.2300, 0.2258, 0.2625])}, | |
"TravelingBirds":{"mean": torch.tensor([0.4584, 0.4369, 0.3957]),"std":torch.tensor([0.2610, 0.2569, 0.2722])}, | |
"ImageNet":{'mean': torch.tensor([0.485, 0.456, 0.406]),'std': torch.tensor([0.229, 0.224, 0.225])} , | |
"StanfordCars":{'mean': torch.tensor([0.4593, 0.4466, 0.4453]),'std': torch.tensor([0.2920, 0.2910, 0.2988])} , | |
"FGVCAircraft":{'mean': torch.tensor([0.4827, 0.5130, 0.5352]), | |
'std': torch.tensor([0.2236, 0.2170, 0.2478]),} | |
} | |
dense_batch_size = EvaluatedDict({False: 16,True: 1024,}, lambda x: x == "ImageNet") | |
ft_batch_size = EvaluatedDict({False: 16,True: 1024,}, lambda x: x == "ImageNet")# Untested |