import numpy as np import torch from sparsification.glmBasedSparsification import compute_feature_selection_and_assignment def compute_sldd_feature_selection_and_assignment(model, train_loader, test_loader, log_folder, num_classes, seed, per_class=5, select_features=50): feature_sel, sparse_matrices, biases, mean, std = compute_feature_selection_and_assignment(model, train_loader, test_loader, log_folder, num_classes, seed, select_features=select_features) weight_sparse, bias_sparse = get_sparsified_weights_for_factor(sparse_matrices,biases, per_class) # Last one in regularisation path has none return feature_sel, weight_sparse, bias_sparse, mean, std def get_sparsified_weights_for_factor(sparse_layer,biases,keep_per_class, drop_rate=0.5): nonzero_entries = [torch.sum(torch.count_nonzero(sparse_layer[i])) for i in range(len(sparse_layer))] mean_sparsity = np.array([nonzero_entries[i] / sparse_layer[i].shape[0] for i in range(len(sparse_layer))]) factor =keep_per_class / drop_rate # Get layer with desired sparsity sparse_enough = mean_sparsity <= factor sel_idx = np.argmax(sparse_enough * mean_sparsity) if sel_idx == 0 and np.sum(mean_sparsity) > 1: # sometimes first one is odd sparse_enough[0] = False sel_idx = np.argmax(sparse_enough * mean_sparsity) selected_weight = sparse_layer[sel_idx] selected_bias = biases[sel_idx] # only keep 5 per class on average weight_5_per_matrix = set_lowest_percent_to_zero(selected_weight,5) return weight_5_per_matrix,selected_bias def set_lowest_percent_to_zero(matrix, keep_per): nonzero_indices = torch.nonzero(matrix) values = torch.tensor([matrix[x[0], x[1]] for x in nonzero_indices]) sorted_indices = torch.argsort(torch.abs(values)) total_allowed = int(matrix.shape[0] * keep_per) sorted_indices = sorted_indices[:-total_allowed] nonzero_indices_to_zero = [nonzero_indices[x] for x in sorted_indices] for to_zero in nonzero_indices_to_zero: matrix[to_zero[0], to_zero[1]] = 0 return matrix